Subspace Kernel Learning on Tensor Sequences
Lei Wang · Xi Ding · Yongsheng Gao · Piotr Koniusz
Abstract
Learning from structured multi-modal data, represented as higher-order tensors, requires capturing complex interactions across modes while remaining computationally efficient. We introduce Uncertainty-driven Kernel Tensor Learning (UKTL), a novel kernel framework for $M$-mode tensors that compares mode-wise subspaces derived from tensor unfoldings, enabling expressive and robust similarity measures. To handle large-scale tensor data, we propose a scalable Nyström kernel linearization with dynamically learned pivot tensors obtained via soft $k$-means clustering. A key innovation of UKTL is its uncertainty-aware subspace weighting, which adaptively down-weights unreliable mode components based on estimated confidence, improving robustness and interpretability in comparisons between input and pivot tensors. Our framework is fully end-to-end trainable and naturally incorporates multi-mode interactions through structured kernel compositions. Extensive evaluations on skeleton-based action recognition benchmarks (NTU-60, NTU-120, Kinetics-Skeleton) show that UKTL achieves state-of-the-art performance, superior generalization, and meaningful mode-wise insights. This work establishes a principled, scalable, and interpretable kernel learning paradigm for structured multi-modal sequences.
Successful Page Load