MergeMix: A Unified Augmentation Paradigm for Visual and Multi-Modal Understanding
Abstract
Vision-language alignment in multi-modal large language models (MLLMs) relies on supervised fine-tuning (SFT) or reinforcement learning (RL). To align multi-modal large language models (MLLMs) in the post-training stage, supervised fine-tuning (SFT) is a stable choice but requires human annotations and lacks task generalizations, while Reinforcement Learning (RL) searches for better answers from reward signals but suffers from computational overhead and instability. To achieve balance among scalability, efficiency, and alignment generalizations, we propose MergeMix, a unified paradigm that bridges SFT and RL with an efficient Token Merge based Mixup augmentation. As for the Mixup policy, we generate contextual aligned mixed images with the corresponding labels according to the merged attention maps with cluster regions. Then, we enhance the preference-driven paradigm for MLLMs by building preference pairs with raw images and MergeMix-generated ones and optimizing the soft preference margin with the mixed SimPO loss. Extensive experiments demonstrate that MergeMix not only achieves dominant classification accuracy as an augmentation method but also improves generalization abilities and alignment of MLLMs, providing a new learning paradigm for preference alignment with training efficiency and stability.