RLAD: Training LLMs to Discover Abstractions for Solving Reasoning Problems
Abstract
Reasoning requires going beyond pattern matching or memorization of solutions to identify and implement algorithmic procedures that can be used to deduce answers to hard problems. Doing so requires reusing primitives, intermediate results, or procedures across multiple problems. While RL post-training on long chains of thought ultimately aims to uncover this kind of algorithmic behavior, the depth-first and brute-force nature of reasoning traces learned by these models suggests that this is far from a fulfilled promise. To address more effective reasoning, we introduce reasoning abstractions: concise natural language descriptions of procedural and factual knowledge that guide the model toward learning successful reasoning. We train models to be capable of proposing several useful abstractions given a problem, followed by RL training that incentivizes building a solution while using the information provided by these abstractions. This results in a two-player RL training paradigm, abbreviated as RLAD, that jointly trains an abstraction generator and an abstraction-conditioned solution generator. This setup effectively enables structured exploration, decouples learning signals of abstraction proposal and solution generation, and improves generalization to harder problems. We also show that spending more test-time compute into generating abstractions is more beneficial for performance than generating more solutions at large inference-time budgets, illustrating the role of abstractions in guiding global exploration.