Towards Multimodal Time Series Anomaly Detection with Semantic Alignment and Condensed Interaction
Abstract
Time series anomaly detection plays a critical role in many dynamic systems. However, previous approaches have primarily relied on unimodal numerical data, overlooking the importance of complementary information from other modalities. In this paper, we propose a novel multimodal time series anomaly detection model (MindTS) that focuses on addressing two key challenges: (1) how to achieve semantically consistent alignment across heterogeneous multimodal data, and (2) how to filter out redundant modality information to enhance cross-modal interaction effectively. To address the first challenge, we propose Fine-grained Time-text Semantic Alignment. It integrates exogenous and endogenous text information through cross-view text fusion and a multimodal alignment mechanism, achieving semantically consistent alignment between time and text modalities. For the second challenge, we introduce Content Condenser Reconstruction, which filters redundant information within the aligned text modality and performs cross-modal reconstruction to enable interaction. Extensive experiments on six real-world multimodal datasets demonstrate that the proposed MindTS achieves competitive or superior results compared to existing methods.