Causal Discovery in the Wild: A Voting-Theoretic Ensemble Approach
Abstract
Causal discovery is a critical yet persistently challenging task across scientific domains. Despite years of significant algorithmic advances, existing methods still struggle with inconsistent outcomes due to reliance on untestable assumptions, sensitivity to data perturbations, and optimization constraints. To this end, ensemble-based causal discovery has been actively pursued, aiming to aggregate multiple structural predictions for increased stability and uncertainty estimation. However, current aggregation methods are largely heuristic, lacking theoretical guarantees and guidance on how ensemble design choices affect performance. This work is proposed to address there fundamental limitations. We introduce a principled voting-based framework for structural ensembling, establishing conditions under which the aggregated structure recovers the true causal graph. Our analysis yields a theoretically justified weighted voting mechanism that informs optimal choices regarding the number, competency, and diversity of causal discovery experts in the ensemble. Extensive experiments on synthetic and real-world datasets verify the robustness and effectiveness of our approach, offering a rigorous alternative to existing heuristic ensemble methods.