A Unifying Framework for Causal Imitation Learning with Hidden Confounders
Daqian Shao · Thomas Kleine Buening · Marta Kwiatkowska
Abstract
We propose a general framework for causal Imitation Learning (IL) with hidden confounders, which subsumes several existing settings. Our framework accounts for two types of hidden confounders: (a) variables observed by the expert but not by the imitator, and (b) confounding noise hidden from both. By leveraging trajectory histories as instruments, we reformulate causal IL in our framework into a Conditional Moment Restriction (CMR) problem. We propose DML-IL, an algorithm that solves this CMR problem via instrumental variable regression, and upper bound its imitation gap. Empirical evaluation on continuous state-action environments, including Mujoco tasks, demonstrates that DML-IL outperforms existing causal IL baselines.
Successful Page Load