Identity-Free Deferral For Unseen Experts
Abstract
Learning to Defer (L2D) improves AI reliability in decision-critical environments, such as healthcare, by training a model to either make its own prediction or delerejector the decision to a human expert. A key challenge is adapting to unseen experts: those who were not involved during the system's training process. Current methods for this task, however, can falter when unseen experts are out-of-distribution (OOD) relative to the training population. We identify a core architectural flaw as the cause: they learn identity-conditioned policies by processing class-indexed signals in fixed coordinates, creating shortcuts that violate the problem's inherent permutation symmetry. We introduce Identity-Free Deferral (IFD), an architecture that enforces this symmetry by construction. From a few-shot context, IFD builds a query-independent Bayesian competence profile for each expert. It then supplies the deferral rejector with a low-dimensional, role-indexed state containing only structural information, such as the model's confidence in its top-ranked class and the expert's estimated skill for that same role, which obscures absolute class identities. We train IFD using an uncertainty-aware, context-only objective that removes the need for expensive query-time expert labels. We formally prove the permutation invariance of our approach, contrasting it with the generic non-invariance of standard population encoders. Experiments on medical imaging benchmarks and ImageNet-16H with real human annotators show that IFD consistently improves generalization to unseen experts, with significant gains in OOD settings, all while using fewer annotations than competing methods.