MAGE: Multi-scale Autoregressive Generation for Offline Reinforcement Learning
Abstract
Generative models have gained significant traction in offline reinforcement learning (RL) due to their ability to model complex trajectory distributions. However, existing generation-based approaches still struggle with long-horizon tasks characterized by sparse rewards. Some hierarchical generation methods have been developed to mitigate this issue by decomposing the original problem into shorter-horizon subproblems using one policy and generating detailed actions with another. While effective, these methods often overlook the multi-scale temporal structure inherent in trajectories, resulting in suboptimal performance. To overcome these limitations, we propose MAGE, a Multi-scale Autoregressive GEneration-based offline RL method. MAGE incorporates a condition-guided multi-scale autoencoder to learn hierarchical trajectory representations, along with a multi-scale transformer that autoregressively generates trajectory representations from coarse to fine temporal scales. MAGE effectively captures temporal dependencies of trajectories at multiple resolutions. Additionally, a condition-guided decoder is employed to exert precise control over short-term behaviors. Extensive experiments on five offline RL benchmarks against fifteen baseline algorithms show that MAGE successfully integrates multi-scale trajectory modeling with conditional guidance, generating coherent and controllable trajectories in long-horizon sparse-reward settings.