Skip to yearly menu bar Skip to main content


( events)   Timezone:  
The 2021 schedule is still incomplete
Invited Talk
Thu May 06 04:00 PM -- 05:00 PM (PDT) @ Virtual
Self-Supervision for Learning from the Bottom Up
Alexei Efros
[ Slides

Why do self-supervised learning? A common answer is: "because data labeling is expensive." In this talk, I will argue that there are other, perhaps more fundamental reasons for working on self-supervision. First, it should allow us to get away from the tyranny of top-down semantic categorization and force meaningful associations to emerge naturally from the raw sensor data in a bottom-up fashion. Second, it should allow us to ditch fixed datasets and enable continuous, online learning, which is a much more natural setting for real-world agents. Third, and most intriguingly, there is hope that it might be possible to force a self-supervised task curriculum to emerge from first principles, even in the absence of a pre-defined downstream task or goal, similar to evolution. In this talk, I will touch upon these themes to argue that, far from running its course, research in self-supervised learning is only just beginning.