Poster
in
Workshop: From Cells to Societies: Collective Learning Across Scales
Goal-Guided Neural Cellular Automata: Learning to Control Self-Organising Systems
Shyam Sudhakaran · Elias Najarro · Sebastian Risi
Inspired by cellular growth and self-organization, Neural Cellular Automata (NCAs) have been capable of "growing" artificial cells into images, 3D structures, and even functional machines. NCAs are flexible and robust computational systems, but are inherently uncontrollable during and after their growth process. In this work, we attempt to control these systems using Goal-Guided Neural Cellular Automata (GoalNCA), which leverages goal encodings to control cell behavior dynamically at every step of cellular growth. This enables the NCA to continually change behavior, and in some cases, generalize its behavior to unseen scenarios. We also demonstrate the robustness of the NCA with its ability to preserve task performance, even when only a portion of cells receive goal information.