A Piece-wise Polynomial Filtering Approach for Graph Neural Networks
in
Workshop: Geometrical and Topological Representation Learning
Abstract
Graph Neural Networks (GNNs) exploit signals from node features and the input graph topology to improve node classification task performance. Recently proposed GNNs work across a variety of homophilic and heterophilic graphs. Among these, models relying on polynomial graph filters have shown promise. We observe that polynomial filter models, in several practical instances, need to learn a reasonably high degree polynomials without facing any over-smoothing effects. We find that existing methods, due to their designs, either have limited efficacy or can be enhanced further. We present a spectral method to learn a bank of filters using a piece-wise polynomial approach, where each filter acts on a different subsets of the eigen spectrum. The approach requires eigendecomposition for a few eigenvalues at extremes (i.e., low and high ends of the spectrum) and offers flexibility to learn sharper and complex shaped frequency responses with low-degree polynomials. We theoretically and empirically show that our proposed model learns a better filter, thereby improving classification accuracy. Our model achieves performance gains of up to ~6% over the state-of-the-art (SOTA) models.