Skip to yearly menu bar Skip to main content


Poster

Revisiting flow generative models for Out-of-distribution detection

Dihong Jiang · Sun Sun · Yaoliang Yu

Keywords: [ out-of-distribution detection ]


Abstract:

Deep generative models have been widely used in practical applications such as the detection of out-of-distribution (OOD) data. In this work, we aim to re-examine the potential of generative flow models in OOD detection. We first propose a simple combination of univariate one-sample statistical test (e.g., Kolmogorov-Smirnov) and random projections in the latent space of flow models to perform OOD detection. Then, we propose a two-sample version of our test to account for imperfect flow models. Quite distinctly, our method does not pose parametric assumptions on OOD data and is capable of exploiting any flow model. Experimentally, firstly we confirm the efficacy of our method against state-of-the-art baselines through extensive experiments on several image datasets; secondly we investigate the relationship between model accuracy (e.g., the generation quality) and the OOD detection performance, and found surprisingly that they are not always positively correlated; and thirdly we show that detection in the latent space of flow models generally outperforms detection in the sample space across various OOD datasets, hence highlighting the benefits of training a flow model.

Chat is not available.