Skip to yearly menu bar Skip to main content


Poster

LOSSY COMPRESSION WITH DISTRIBUTION SHIFT AS ENTROPY CONSTRAINED OPTIMAL TRANSPORT

Huan Liu · George Zhang · Jun Chen · Ashish Khisti

Keywords: [ deep learning ] [ image compression ] [ image restoration ] [ optimal transport ]


Abstract:

We study an extension of lossy compression where the reconstruction distribution is different from the source distribution in order to account for distributional shift due to processing. We formulate this as a generalization of optimal transport with an entropy bottleneck to account for the rate constraint due to compression. We provide expressions for the tradeoff between compression rate and the achievable distortion with and without shared common randomness between the encoder and decoder. We study the examples of binary, uniform and Gaussian sources (in an asymptotic setting) in detail and demonstrate that shared randomness can strictly improve the tradeoff. For the case without common randomness and squared-Euclidean distortion, we show that the optimal solution partially decouples into the problem of optimal compression and transport and also characterize the penalty associated with fully decoupling them. We provide experimental results by training deep learning end-to-end compression systems for performing denoising on SVHN and super-resolution on MNIST suggesting consistency with our theoretical results.

Chat is not available.