Sample and Computation Redistribution for Efficient Face Detection

Jia Guo · Jiankang Deng · Alexandros Lattas · Stefanos Zafeiriou

[ Abstract ]
[ Visit Poster at Spot C3 in Virtual World ] [ OpenReview
Mon 25 Apr 2:30 a.m. PDT — 4:30 a.m. PDT

Abstract: Although tremendous strides have been made in uncontrolled face detection, accurate face detection with a low computation cost remains an open challenge. In this paper, we point out that computation distribution and scale augmentation are the keys to detecting small faces from low-resolution images. Motivated by these observations, we introduce two simple but effective methods: (1) Computation Redistribution (CR), which reallocates the computation between the backbone, neck and head of the model; and (2) Sample Redistribution (SR), which augments training samples for the most needed stages. The proposed Sample and Computation Redistribution for Face Detection (SCRFD) is implemented by a random search in a meticulously designed search space. Extensive experiments conducted on WIDER FACE demonstrate the state-of-the-art accuracy-efficiency trade-off for the proposed SCRFD family across a wide range of compute regimes. In particular, SCRFD-34GF outperforms the best competitor, TinaFace, by $4.78\%$ (AP at hard set) while being more than 3$\times$ faster on GPUs with VGA-resolution images. Code is available at:

Chat is not available.