Poster

Neural graphical modelling in continuous-time: consistency guarantees and algorithms

Alexis Bellot · Kim Branson · Mihaela van der Schaar

Keywords: [ structure learning ] [ dynamical systems ]


Abstract:

The discovery of structure from time series data is a key problem in fields of study working with complex systems. Most identifiability results and learning algorithms assume the underlying dynamics to be discrete in time. Comparatively few, in contrast, explicitly define dependencies in infinitesimal intervals of time, independently of the scale of observation and of the regularity of sampling. In this paper, we consider score-based structure learning for the study of dynamical systems. We prove that for vector fields parameterized in a large class of neural networks, least squares optimization with adaptive regularization schemes consistently recovers directed graphs of local independencies in systems of stochastic differential equations. Using this insight, we propose a score-based learning algorithm based on penalized Neural Ordinary Differential Equations (modelling the mean process) that we show to be applicable to the general setting of irregularly-sampled multivariate time series and to outperform the state of the art across a range of dynamical systems.

Chat is not available.