Poster

Towards Empirical Sandwich Bounds on the Rate-Distortion Function

Yibo Yang · Stephan Mandt

Keywords: [ Deep generative modeling ] [ information theory ]

Abstract:

Rate-distortion (R-D) function, a key quantity in information theory, characterizes the fundamental limit of how much a data source can be compressed subject to a fidelity criterion, by any compression algorithm. As researchers push for ever-improving compression performance, establishing the R-D function of a given data source is not only of scientific interest, but also sheds light on the possible room for improving compression algorithms. Previous work on this problem relied on distributional assumptions on the data source (Gibson, 2017) or only applied to discrete data (Blahut, 1972; Arimoto, 1972). By contrast, this paper makes the first attempt at an algorithm for sandwiching the R-D function of a general (not necessarily discrete) source requiring only i.i.d. data samples. We estimate R-D sandwich bounds for a variety of artificial and real-world data sources, in settings far beyond the feasibility of any known method, and shed light on the optimality of neural data compression (Ballé et al., 2021; Yang et al., 2022). Our R-D upper bound on natural images indicates theoretical room for improving state-of-the-art image compression methods by at least one dB in PSNR at various bitrates. Our data and code can be found at https://github.com/mandt-lab/empirical-RD-sandwich.

Chat is not available.