Fairness Guarantees under Demographic Shift

Stephen Giguere · Blossom Metevier · Bruno Silva · Yuriy Brun · Philip Thomas · Scott Niekum

Keywords: [ machine learning ]

[ Abstract ]
[ Visit Poster at Spot E3 in Virtual World ] [ OpenReview
Tue 26 Apr 10:30 a.m. PDT — 12:30 p.m. PDT


Recent studies have demonstrated that using machine learning for social applications can lead to injustice in the form of racist, sexist, and otherwise unfair and discriminatory outcomes. To address this challenge, recent machine learning algorithms have been designed to limit the likelihood such unfair behaviors will occur. However, these approaches typically assume the data used for training is representative of what will be encountered once the model is deployed, thus limiting their usefulness. In particular, if certain subgroups of the population become more or less probable after the model is deployed (a phenomenon we call demographic shift), the fair-ness assurances provided by prior algorithms are often invalid. We consider the impact of demographic shift and present a class of algorithms, called Shifty algorithms, that provide high-confidence behavioral guarantees that hold under demographic shift. Shifty is the first technique of its kind and demonstrates an effective strategy for designing algorithms to overcome the challenges demographic shift poses. We evaluate Shifty-ttest, an implementation of Shifty based on Student’s 𝑡-test, and, using a real-world data set of university entrance exams and subsequent student success, show that the models output by our algorithm avoid unfair bias under demo-graphic shift, unlike existing methods. Our experiments demonstrate that our algorithm’s high-confidence fairness guarantees are valid in practice and that our algorithm is an effective tool for training models that are fair when demographic shift occurs.

Chat is not available.