Poster
Large Learning Rate Tames Homogeneity: Convergence and Balancing Effect
Yuqing Wang · Minshuo Chen · Tuo Zhao · Molei Tao
Keywords: [ gradient descent ] [ implicit regularization ] [ alignment ] [ matrix factorization ] [ convergence ]
Abstract:
Recent empirical advances show that training deep models with large learning rate often improves generalization performance. However, theoretical justifications on the benefits of large learning rate are highly limited, due to challenges in analysis. In this paper, we consider using Gradient Descent (GD) with a large learning rate on a homogeneous matrix factorization problem, i.e., $\min_{X, Y} \|A - XY^\top\|_{\sf F}^2$. We prove a convergence theory for constant large learning rates well beyond $2/L$, where $L$ is the largest eigenvalue of Hessian at the initialization. Moreover, we rigorously establish an implicit bias of GD induced by such a large learning rate, termed `balancing', meaning that magnitudes of $X$ and $Y$ at the limit of GD iterations will be close even if their initialization is significantly unbalanced. Numerical experiments are provided to support our theory.
Chat is not available.