Skip to yearly menu bar Skip to main content


Poster

A global convergence theory for deep ReLU implicit networks via over-parameterization

Tianxiang Gao · Hailiang Liu · Jia Liu · Hridesh Rajan · Hongyang Gao

Keywords: [ stochastic gradient descent ] [ gradient descent ] [ deep learning ] [ Over-parameterization ]


Abstract: Implicit deep learning has received increasing attention recently due to the fact that it generalizes the recursive prediction rule of many commonly used neural network architectures. Its prediction rule is provided implicitly based on the solution of an equilibrium equation. Although a line of recent empirical studies has demonstrated its superior performances, the theoretical understanding of implicit neural networks is limited. In general, the equilibrium equation may not be well-posed during the training. As a result, there is no guarantee that a vanilla (stochastic) gradient descent (SGD) training nonlinear implicit neural networks can converge. This paper fills the gap by analyzing the gradient flow of Rectified Linear Unit (ReLU) activated implicit neural networks. For an $m$ width implicit neural network with ReLU activation and $n$ training samples, we show that a randomly initialized gradient descent converges to a global minimum at a linear rate for the square loss function if the implicit neural network is over-parameterized. It is worth noting that, unlike existing works on the convergence of (S)GD on finite-layer over-parameterized neural networks, our convergence results hold for implicit neural networks, where the number of layers is infinite.

Chat is not available.