Skip to yearly menu bar Skip to main content


Learnability of convolutional neural networks for infinite dimensional input via mixed and anisotropic smoothness

Sho Okumoto · Taiji Suzuki


Among a wide range of success of deep learning, convolutional neural networks have been extensively utilized in several tasks such as speech recognition, image processing, and natural language processing, which require inputs with large dimensions.Several studies have investigated function estimation capability of deep learning, but most of them have assumed that the dimensionality of the input is much smaller than the sample size. However, for typical data in applications such as those handled by the convolutional neural networks described above, the dimensionality of inputs is relatively high or even infinite. In this paper, we investigate the approximation and estimation errors of the (dilated) convolutional neural networks when the input is infinite dimensional. Although the approximation and estimation errors of neural networks are affected by the curse of dimensionality in the existing analyses for typical function spaces such as the \Holder and Besov spaces, we show that, by considering anisotropic smoothness, they can alleviate exponential dependency on the dimensionality but they only depend on the smoothness of the target functions. Our theoretical analysis supports the great practical success of convolutional networks. Furthermore, we show that the dilated convolution is advantageous when the smoothness of the target function has a sparse structure.

Chat is not available.