Zero-Shot Self-Supervised Learning for MRI Reconstruction

Burhaneddin Yaman · Seyed Amir Hossein Hosseini · Mehmet Akcakaya

Keywords: [ self-supervised learning ] [ physics-guided deep learning ] [ zero-shot learning ] [ transfer learning ]

[ Abstract ]
[ Visit Poster at Spot B0 in Virtual World ] [ OpenReview
Wed 27 Apr 6:30 p.m. PDT — 8:30 p.m. PDT

Abstract: Deep learning (DL) has emerged as a powerful tool for accelerated MRI reconstruction, but often necessitates a database of fully-sampled measurements for training. Recent self-supervised and unsupervised learning approaches enable training without fully-sampled data. However, a database of undersampled measurements may not be available in many scenarios, especially for scans involving contrast or translational acquisitions in development. Moreover, recent studies show that database-trained models may not generalize well when the unseen measurements differ in terms of sampling pattern, acceleration rate, SNR, image contrast, and anatomy. Such challenges necessitate a new methodology to enable subject-specific DL MRI reconstruction without external training datasets, since it is clinically imperative to provide high-quality reconstructions that can be used to identify lesions/disease for $\textit{every individual}$. In this work, we propose a zero-shot self-supervised learning approach to perform subject-specific accelerated DL MRI reconstruction to tackle these issues. The proposed approach partitions the available measurements from a single scan into three disjoint sets. Two of these sets are used to enforce data consistency and define loss during training for self-supervision, while the last set serves to self-validate, establishing an early stopping criterion. In the presence of models pre-trained on a database with different image characteristics, we show that the proposed approach can be combined with transfer learning for faster convergence time and reduced computational complexity.

Chat is not available.