Missingness Bias in Model Debugging

Saachi Jain · Hadi Salman · Eric Wong · Pengchuan Zhang · Vibhav Vineet · Sai Vemprala · Aleksander Madry

[ Abstract ]
[ Visit Poster at Spot I0 in Virtual World ] [ OpenReview
Wed 27 Apr 10:30 a.m. PDT — 12:30 p.m. PDT


Missingness, or the absence of features from an input, is a concept fundamental to many model debugging tools. However, in computer vision, pixels cannot simply be removed from an image. One thus tends to resort to heuristics such as blacking out pixels, which may in turn introduce bias into the debugging process. We study such biases and, in particular, show how transformer-based architectures can enable a more natural implementation of missingness, which side-steps these issues and improves the reliability of model debugging in practice.

Chat is not available.