Skip to yearly menu bar Skip to main content


Poster

Learning State Representations via Retracing in Reinforcement Learning

Changmin Yu · Dong Li · Jianye HAO · Jun Wang · Neil Burgess

Keywords: [ model-based reinforcement learning ] [ representation learning ]


Abstract:

We propose learning via retracing, a novel self-supervised approach for learning the state representation (and the associated dynamics model) for reinforcement learning tasks. In addition to the predictive (reconstruction) supervision in the forward direction, we propose to include "retraced" transitions for representation/model learning, by enforcing the cycle-consistency constraint between the original and retraced states, hence improve upon the sample efficiency of learning. Moreover, learning via retracing explicitly propagates information about future transitions backward for inferring previous states, thus facilitates stronger representation learning for the downstream reinforcement learning tasks. We introduce Cycle-Consistency World Model (CCWM), a concrete model-based instantiation of learning via retracing. Additionally we propose a novel adaptive "truncation" mechanism for counteracting the negative impacts brought by "irreversible" transitions such that learning via retracing can be maximally effective. Through extensive empirical studies on visual-based continuous control benchmarks, we demonstrate that CCWM achieves state-of-the-art performance in terms of sample efficiency and asymptotic performance, whilst exhibiting behaviours that are indicative of stronger representation learning.

Chat is not available.