Skip to yearly menu bar Skip to main content


Oral 4: Probablistic Models, Vision

Moderators: José Miguel Hernández Lobato · Tim Salimans


Chat is not available.

Thu 28 April 1:00 - 1:15 PDT

Outstanding Paper
Analytic-DPM: an Analytic Estimate of the Optimal Reverse Variance in Diffusion Probabilistic Models

Fan Bao · Chongxuan Li · Jun Zhu · Bo Zhang

Diffusion probabilistic models (DPMs) represent a class of powerful generative models. Despite their success, the inference of DPMs is expensive since it generally needs to iterate over thousands of timesteps. A key problem in the inference is to estimate the variance in each timestep of the reverse process. In this work, we present a surprising result that both the optimal reverse variance and the corresponding optimal KL divergence of a DPM have analytic forms w.r.t. its score function. Building upon it, we propose \textit{Analytic-DPM}, a training-free inference framework that estimates the analytic forms of the variance and KL divergence using the Monte Carlo method and a pretrained score-based model. Further, to correct the potential bias caused by the score-based model, we derive both lower and upper bounds of the optimal variance and clip the estimate for a better result. Empirically, our analytic-DPM improves the log-likelihood of various DPMs, produces high-quality samples, and meanwhile enjoys a $20\times$ to $80\times$ speed up.

Thu 28 April 1:15 - 1:30 PDT

Outstanding Paper
Comparing Distributions by Measuring Differences that Affect Decision Making

Shengjia Zhao · Abhishek Sinha · Yutong He · Aidan Perreault · Jiaming Song · Stefano Ermon

Measuring the discrepancy between two probability distributions is a fundamental problem in machine learning and statistics. We propose a new class of discrepancies based on the optimal loss for a decision task -- two distributions are different if the optimal decision loss is higher on their mixture than on each individual distribution. By suitably choosing the decision task, this generalizes the Jensen-Shannon divergence and the maximum mean discrepancy family. We apply our approach to two-sample tests, and on various benchmarks, we achieve superior test power compared to competing methods. In addition, a modeler can directly specify their preferences when comparing distributions through the decision loss. We apply this property to understanding the effects of climate change on different social and economic activities, evaluating sample quality, and selecting features targeting different decision tasks.

Thu 28 April 1:30 - 1:45 PDT

Unsupervised Vision-Language Grammar Induction with Shared Structure Modeling

Bo Wan · Wenjuan Han · Zilong Zheng · Tinne Tuytelaars

We introduce a new task, unsupervised vision-language (VL) grammar induction. Given an image-caption pair, the goal is to extract a shared hierarchical structure for both image and language simultaneously. We argue that such structured output, grounded in both modalities, is a clear step towards the high-level understanding of multimodal information. Besides challenges existing in conventional visually grounded grammar induction tasks, VL grammar induction requires a model to capture contextual semantics and perform a fine-grained alignment. To address these challenges, we propose a novel method, CLIORA, which constructs a shared vision-language constituency tree structure with context-dependent semantics for all possible phrases in different levels of the tree. It computes a matching score between each constituent and image region, trained via contrastive learning. It integrates two levels of fusion, namely at feature-level and at score-level, so as to allow fine-grained alignment. We introduce a new evaluation metric for VL grammar induction, CCRA, and show a 3.3% improvement over a strong baseline on Flickr30k Entities. We also evaluate our model via two derived tasks, i.e., language grammar induction and phrase grounding, and improve over the state-of-the-art for both.

Thu 28 April 1:45 - 2:00 PDT

RISP: Rendering-Invariant State Predictor with Differentiable Simulation and Rendering for Cross-Domain Parameter Estimation

Pingchuan Ma · Tao Du · Joshua B Tenenbaum · Wojciech Matusik · Chuang Gan

This work considers identifying parameters characterizing a physical system's dynamic motion directly from a video whose rendering configurations are inaccessible. Existing solutions require massive training data or lack generalizability to unknown rendering configurations. We propose a novel approach that marries domain randomization and differentiable rendering gradients to address this problem. Our core idea is to train a rendering-invariant state-prediction (RISP) network that transforms image differences into state differences independent of rendering configurations, e.g., lighting, shadows, or material reflectance. To train this predictor, we formulate a new loss on rendering variances using gradients from differentiable rendering. Moreover, we present an efficient, second-order method to compute the gradients of this loss, allowing it to be integrated seamlessly into modern deep learning frameworks. We evaluate our method in rigid-body and deformable-body simulation environments using four tasks: state estimation, system identification, imitation learning, and visuomotor control. We further demonstrate the efficacy of our approach on a real-world example: inferring the state and action sequences of a quadrotor from a video of its motion sequences. Compared with existing methods, our approach achieves significantly lower reconstruction errors and has better generalizability among unknown rendering configurations.

Thu 28 April 2:00 - 2:15 PDT

BEiT: BERT Pre-Training of Image Transformers

Hangbo Bao · Li Dong · Songhao Piao · Furu Wei

We introduce a self-supervised vision representation model BEiT, which stands for Bidirectional Encoder representation from Image Transformers. Following BERT developed in the natural language processing area, we propose a masked image modeling task to pretrain vision Transformers. Specifically, each image has two views in our pre-training, i.e., image patches (such as 16 x 16 pixels), and visual tokens (i.e., discrete tokens). We first ``tokenize'' the original image into visual tokens. Then we randomly mask some image patches and fed them into the backbone Transformer. The pre-training objective is to recover the original visual tokens based on the corrupted image patches. After pre-training BEiT, we directly fine-tune the model parameters on downstream tasks by appending task layers upon the pretrained encoder. Experimental results on image classification and semantic segmentation show that our model achieves competitive results with previous pre-training methods.

Thu 28 April 2:15 - 2:30 PDT

Resolving Training Biases via Influence-based Data Relabeling

Shuming Kong · Yanyan Shen · Linpeng Huang

The performance of supervised learning methods easily suffers from the training bias issue caused by train-test distribution mismatch or label noise. Influence function is a technique that estimates the impacts of a training sample on the model’s predictions. Recent studies on \emph{data resampling} have employed influence functions to identify \emph{harmful} training samples that will degrade model's test performance. They have shown that discarding or downweighting the identified harmful training samples is an effective way to resolve training biases. In this work, we move one step forward and propose an influence-based relabeling framework named RDIA for reusing harmful training samples toward better model performance. To achieve this, we use influence functions to estimate how relabeling a training sample would affect model's test performance and further develop a novel relabeling function R. We theoretically prove that applying R to relabel harmful training samples allows the model to achieve lower test loss than simply discarding them for any classification tasks using cross-entropy loss. Extensive experiments on ten real-world datasets demonstrate RDIA outperforms the state-of-the-art data resampling methods and improves model's robustness against label noise.