Skip to yearly menu bar Skip to main content


Spotlight

Reinforcement Learning under a Multi-agent Predictive State Representation Model: Method and Theory

Zhi Zhang · Zhuoran Yang · Han Liu · Pratap Tokekar · Furong Huang

Abstract: This paper proposes a new algorithm for learning the optimal policies under a novel multi-agent predictive state representation reinforcement learning model. Compared to the state-of-the-art methods, the most striking feature of our approach is the introduction of a dynamic interaction graph to the model, which allows us to represent each agent's predictive state by considering the behaviors of its neighborhood'' agents. Methodologically, we develop an online algorithm that simultaneously learns the predictive state representation and agent policies. Theoretically, we provide an upper bound of the L2-norm of the learned predictive state representation. Empirically, to demonstrate the efficacy of the proposed method, we provide thorough numerical results on both a MAMuJoCo robotic learning experiment and a multi-agent particle learning environment.

Chat is not available.