Skip to yearly menu bar Skip to main content


Spotlight

On the Optimal Memorization Power of ReLU Neural Networks

Gal Vardi · Gilad Yehudai · Ohad Shamir

Abstract: We study the memorization power of feedforward ReLU neural networks. We show that such networks can memorize any N points that satisfy a mild separability assumption using O~(N) parameters. Known VC-dimension upper bounds imply that memorizing N samples requires Ω(N) parameters, and hence our construction is optimal up to logarithmic factors. We also give a generalized construction for networks with depth bounded by 1LN, for memorizing N samples using O~(N/L) parameters. This bound is also optimal up to logarithmic factors. Our construction uses weights with large bit complexity. We prove that having such a large bit complexity is both necessary and sufficient for memorization with a sub-linear number of parameters.

Chat is not available.