Workshop
Gamification and Multiagent Solutions
Andrea Tacchetti · Ian Gemp · Elise van der Pol · Arash Mehrjou · Satpreet H Singh · Noah Golowich · Sarah Perrin · Nina Vesseron
Fri 29 Apr, 5 a.m. PDT
Can we reformulate machine learning from the ground up with multiagent in mind? Modern machine learning primarily takes an optimization-first, single-agent approach, however, many of life’s intelligent systems are multiagent in nature across a range of scales and domains such as market economies, ant colonies, forest ecosystems, and decentralized energy grids.
Generative adversarial networks represent one of the most recent successful deviations from the dominant single-agent paradigm by formulating generative modeling as a two-player, zero-sum game. Similarly, a few recent methods formulating root node problems of machine learning and data science as games among interacting agents have gained recognition (PCA, NMF). Multiagent designs are typically distributed and decentralized which leads to robust and parallelizable learning algorithms.
We want to bring together a community of people that wants to revisit machine learning problems and reformulate them as solutions to games. How might this algorithmic bias affect the solutions that arise and could we define a blueprint for problems that are amenable to gamification? By exploring this direction, we may gain a fresh perspective on machine learning with distinct advantages to the current dominant optimization paradigm.
Schedule
Fri 5:00 a.m. - 5:15 a.m.
|
Opening Remarks
(
Intro
)
>
|
🔗 |
Fri 5:15 a.m. - 5:50 a.m.
|
Professor Sarit Kraus: Agent-Human Complex Games for Multi-agent Studies
(
Invited Talk
)
>
SlidesLive Video |
Sarit Kraus 🔗 |
Fri 5:50 a.m. - 5:55 a.m.
|
Sarit Kraus Q&A
(
Q&A
)
>
|
🔗 |
Fri 5:55 a.m. - 6:00 a.m.
|
Pessimistic Minimax Value Iteration: Provably Efficient Equilibrium Learning from Offline Datasets
(
Poster Spotlights
)
>
link
SlidesLive Video |
Han Zhong · Wei Xiong · Jiyuan Tan · Liwei Wang · Tong Zhang · Zhaoran Wang · Zhuoran Yang 🔗 |
Fri 6:00 a.m. - 6:05 a.m.
|
Learning to Share in Multi-Agent Reinforcement Learning
(
Poster Spotlights
)
>
link
SlidesLive Video |
Yuxuan Yi · Ge Li · Yaowei Wang · Zongqing Lu 🔗 |
Fri 6:05 a.m. - 6:10 a.m.
|
A Regret Minimization Approach to Multi-Agent Control
(
Poster Spotlights
)
>
link
SlidesLive Video |
Udaya Ghai · Udari Madhushani · Naomi Leonard · Elad Hazan 🔗 |
Fri 6:10 a.m. - 6:15 a.m.
|
A Game-Theoretic Approach for Improving Generalization Ability of TSP Solvers
(
Poster Spotlights
)
>
link
SlidesLive Video |
Chenguang Wang · Yaodong Yang · Oliver Slumbers · Congying Han · Tiande Guo · Haifeng Zhang · Jun Wang 🔗 |
Fri 6:15 a.m. - 6:50 a.m.
|
Professor Elad Schneidman: Efficient Collective Behavior from Maximizing Diversity
(
Invited Talk
)
>
SlidesLive Video |
🔗 |
Fri 6:50 a.m. - 6:55 a.m.
|
Elad Schneidman Q&A
(
Q&A
)
>
|
🔗 |
Fri 6:55 a.m. - 7:45 a.m.
|
Poster Session 1 + Coffee Break
(
Poster Session
)
>
|
🔗 |
Fri 7:45 a.m. - 8:10 a.m.
|
Near-Optimal Learning of Extensive-Form Games with Imperfect Information
(
Contributed Talk
)
>
link
SlidesLive Video |
Yu Bai · Chi Jin · Song Mei · Tiancheng Yu 🔗 |
Fri 8:10 a.m. - 8:50 a.m.
|
“The Multiagent Hammer” w/ Sarit Kraus, Elad Schneidman, Tiancheng Yu, Goran Zuzic
(
Discussion Panel
)
>
|
🔗 |
Fri 8:50 a.m. - 9:30 a.m.
|
Professor Constantinos ("Costis") Daskalakis: Equilibrium Computation & Machine Learning
(
Invited Talk
)
>
SlidesLive Video |
Constantinos C Daskalakis 🔗 |
Fri 9:30 a.m. - 9:35 a.m.
|
Constantinos Daskalakis Q&A
(
Q&A
)
>
|
🔗 |
Fri 9:35 a.m. - 10:45 a.m.
|
Lunch
|
🔗 |
Fri 10:45 a.m. - 11:10 a.m.
|
Learning Robust Algorithms for Online Allocation Problems Using Adversarial Training
(
Contributed Talk
)
>
link
SlidesLive Video |
Goran Zuzic · Di Wang · Aranyak Mehta · D. Sivakumar 🔗 |
Fri 11:10 a.m. - 11:45 a.m.
|
Dr Kaiqing Zhang: Multi-agent Reinforcement Learning in Stochastic Games: From AlphaGo to Robust Control
(
Invited Talk
)
>
|
Kaiqing Zhang 🔗 |
Fri 11:45 a.m. - 11:50 a.m.
|
Kaiqing Zhang Q&A
(
Q&A
)
>
|
🔗 |
Fri 11:50 a.m. - 11:55 a.m.
|
V-Learning -- A Simple, Efficient, Decentralized Algorithm for Multiagent RL
(
Poster Spotlights
)
>
link
SlidesLive Video |
Chi Jin · Qinghua Liu · Yuanhao Wang · Tiancheng Yu 🔗 |
Fri 11:55 a.m. - 12:00 p.m.
|
Model-Free Opponent Shaping
(
Poster Spotlights
)
>
link
SlidesLive Video |
Chris Lu · Timon Willi · Christian Schroeder de Witt · Jakob Foerster 🔗 |
Fri 12:00 p.m. - 12:05 p.m.
|
Influencing Long-Term Behavior in Multiagent Reinforcement Learning
(
Poster Spotlights
)
>
link
SlidesLive Video |
Dong Ki Kim · Matt Riemer · Miao Liu · Jakob Foerster · Michael Everett · Chuangchuang Sun · Gerald Tesauro · JONATHAN HOW 🔗 |
Fri 12:05 p.m. - 12:10 p.m.
|
Zero-Sum Stochastic Stackelberg Games
(
Poster Spotlights
)
>
link
SlidesLive Video |
Denizalp Goktas · Jiayi Zhao · Amy Greenwald 🔗 |
Fri 12:10 p.m. - 1:00 p.m.
|
Poster Session 2 + Coffee Break
(
Poster Session
)
>
|
🔗 |
Fri 1:00 p.m. - 1:40 p.m.
|
Professor Lillian Ratliff: Beyond Open Loop Algorithm Design: Learning from Decision-Dependent Data
(
Invited Talk
)
>
SlidesLive Video |
Lillian J Ratliff 🔗 |
Fri 1:40 p.m. - 1:45 p.m.
|
Lillian Ratliff Q&A
(
Q&A
)
>
|
🔗 |
Fri 1:45 p.m. - 2:10 p.m.
|
Modeling Strong and Human-like Gameplay with KL-Regularized Search
(
Contributed Talk
)
>
link
SlidesLive Video |
Athul Paul Jacob · David Wu · Gabriele Farina · Adam Lerer · Hengyuan Hu · Anton Bakhtin · Jacob Andreas · Noam Brown 🔗 |
Fri 2:10 p.m. - 2:50 p.m.
|
“The Multiagent Hammer” w/ Lillian Ratliff, Constantinos Daskalakis, Kaiqing Zhang, Noam Brown
(
Discussion Panel
)
>
|
🔗 |
Fri 2:50 p.m. - 3:00 p.m.
|
Closing Remarks
(
Close
)
>
|
🔗 |
-
|
Optimal Correlated Equilibria in General-Sum Extensive-Form Games: Fixed-Parameter Algorithms, Hardness, and Two-Sided Column-Generation ( Poster ) > link | Brian Zhang · Gabriele Farina · Andrea Celli · Tuomas Sandholm 🔗 |
-
|
General sum stochastic games with networked information flow ( Poster ) > link | Sarah Li · Lillian J Ratliff · Peeyush Kumar 🔗 |
-
|
Finding and only finding local Nash equilibria by both pretending to be a follower ( Poster ) > link | Xuchan Bao · Guodong Zhang 🔗 |
-
|
Automated equilibrium analysis of 2x2x2 games ( Poster ) > link | Sahar Jahani · Bernhard Von Stengel 🔗 |
-
|
Collaborative Auto-Curricula Multi-Agent Reinforcement Learning with Graph Neural Network Communication Layer for Open-ended Wildfire-Management Resource Distribution ( Poster ) > link | Philipp D Siedler 🔗 |
-
|
Coalition Formation in Ridesharing with Walking Options ( Poster ) > link | Lucia Cipolina Kun · Sebastian Stein · Vahid Yazdanpanah · Enrico Gerding 🔗 |
-
|
Stackelberg Policy Gradient: Evaluating the Performance of Leaders and Followers ( Poster ) > link | Quoc-Liem Vu · Zane Alumbaugh · Ryan Ching · Quanchen Ding · Arnav Mahajan · Benjamin Chasnov · Sam Burden · Lillian J Ratliff 🔗 |
-
|
Generalization Games for Reinforcement Learning ( Poster ) > link | Manfred Diaz · Charlie Gauthier · Glen Berseth · Liam Paull 🔗 |
-
|
Zero-Sum Stochastic Stackelberg Games ( Poster ) > link | Denizalp Goktas · Jiayi Zhao · Amy Greenwald 🔗 |
-
|
Object Representations as Equilibria: Training Iterative Inference Algorithms with Implicit Differentiation ( Poster ) > link | Michael Chang · Thomas L. Griffiths · Sergey Levine 🔗 |
-
|
Team Belief DAG Form: A Concise Representation for Team-Correlated Game-Theoretic Decision Making ( Poster ) > link | Brian Zhang · Gabriele Farina · Tuomas Sandholm 🔗 |
-
|
Staged independent learning: Towards decentralized cooperative multi-agent Reinforcement Learning ( Poster ) > link | Hadi Nekoei · Akilesh Badrinaaraayanan · Amit Sinha · Mohammad Amini · Janarthanan Rajendran · Aditya Mahajan · Sarath Chandar 🔗 |
-
|
Competitive Physics Informed Networks ( Poster ) > link | Qi Zeng · Spencer Bryngelson · Florian Schaefer 🔗 |
-
|
Modeling Strong and Human-like Gameplay with KL-Regularized Search ( Poster ) > link | Athul Paul Jacob · David Wu · Gabriele Farina · Adam Lerer · Hengyuan Hu · Anton Bakhtin · Jacob Andreas · Noam Brown 🔗 |
-
|
Multi-Agent Neural Rewriter for Vehicle Routing with Limited Disclosure of Costs ( Poster ) > link | Nathalie Paul · Alexander Kiser · Tim Wirtz · Stefan Wrobel 🔗 |
-
|
A Non-Negative Matrix Factorization Game ( Poster ) > link | Satpreet H Singh 🔗 |
-
|
Influencing Long-Term Behavior in Multiagent Reinforcement Learning ( Poster ) > link | Dong Ki Kim · Matt Riemer · Miao Liu · Jakob Foerster · Michael Everett · Chuangchuang Sun · Gerald Tesauro · JONATHAN HOW 🔗 |
-
|
Online Learning in Iterated Prisoner's Dilemma to Mimic Human Behavior ( Poster ) > link | Baihan Lin · Djallel Bouneffouf · Guillermo Cecchi 🔗 |
-
|
Solving Structured Hierarchical Games Using Differential Backward Induction ( Poster ) > link | Zun Li · Feiran Jia · Aditya Mate · Shahin Jabbari · Mithun Chakraborty · Milind Tambe · Yevgeniy Vorobeychik 🔗 |
-
|
Model-Free Opponent Shaping ( Poster ) > link | Chris Lu · Timon Willi · Christian Schroeder de Witt · Jakob Foerster 🔗 |
-
|
Introducing Coordination in Concurrent Reinforcement Learning ( Poster ) > link | Adrien Ali Taiga · Aaron Courville · Marc G Bellemare 🔗 |
-
|
V-Learning -- A Simple, Efficient, Decentralized Algorithm for Multiagent RL ( Poster ) > link | Chi Jin · Qinghua Liu · Yuanhao Wang · Tiancheng Yu 🔗 |
-
|
Learning Meta Representations for Agents in Multi-Agent Reinforcement Learning ( Poster ) > link | Shenao Zhang · Li Shen · Lei Han · Li Shen 🔗 |
-
|
Near-Optimal Learning of Extensive-Form Games with Imperfect Information ( Poster ) > link | Yu Bai · Chi Jin · Song Mei · Tiancheng Yu 🔗 |
-
|
Learning Robust Algorithms for Online Allocation Problems Using Adversarial Training ( Poster ) > link | Goran Zuzic · Di Wang · Aranyak Mehta · D. Sivakumar 🔗 |
-
|
Dynamic Noises of Multi-Agent Environments Can Improve Generalization: Agent-based Models meets Reinforcement Learning ( Poster ) > link | Mohamed Akrout · Bob McLeod 🔗 |
-
|
When is Offline Two-Player Zero-Sum Markov Game Solvable? ( Poster ) > link | Qiwen Cui · Simon Du 🔗 |
-
|
A Self-Play Posterior Sampling Algorithm for Zero-Sum Markov Games ( Poster ) > link | Wei Xiong · Han Zhong · Chengshuai Shi · Cong Shen · Tong Zhang 🔗 |
-
|
Pessimistic Minimax Value Iteration: Provably Efficient Equilibrium Learning from Offline Datasets ( Poster ) > link | Han Zhong · Wei Xiong · Jiyuan Tan · Liwei Wang · Tong Zhang · Zhaoran Wang · Zhuoran Yang 🔗 |
-
|
Can Reinforcement Learning Efficiently Find Stackelberg-Nash Equilibria in General-Sum Markov Games with Myopic Followers? ( Poster ) > link | Han Zhong · Zhuoran Yang · Zhaoran Wang · Michael Jordan 🔗 |
-
|
Teamwork Reinforcement Learning with Concave Utilities ( Poster ) > link | Zheng Yu · Junyu Zhang · Zheng Wen · Andrea Tacchetti · Mengdi Wang · Ian Gemp 🔗 |
-
|
EigenGame Unloaded: When playing games is better than optimizing ( Poster ) > link | Ian Gemp · Brian McWilliams · Claire Vernade · Thore Graepel 🔗 |
-
|
Backdoors Stuck At The Frontdoor: Multi-Agent Backdoor Attacks That Backfire ( Poster ) > link | Siddhartha Datta · Nigel Shadbolt 🔗 |
-
|
Learning to Share in Multi-Agent Reinforcement Learning ( Poster ) > link | Yuxuan Yi · Ge Li · Yaowei Wang · Zongqing Lu 🔗 |
-
|
FOLLOW THE NEURALLY-PERTURBED LEADER FOR ADVERSARIAL TRAINING ( Poster ) > link | Ari Azarafrooz 🔗 |
-
|
Safe Opponent-Exploitation Subgame Refinement ( Poster ) > link | Mingyang Liu · Chengjie Wu · Qihan Liu · Yansen Jing · Jun Yang · Pingzhong Tang · Chongjie Zhang 🔗 |
-
|
HCMD-zero: Learning Value Aligned Mechanisms from Data ( Poster ) > link | Jan Balaguer · Raphael Koster · Ari Weinstein · Lucy Campbell-Gillingham · Christopher Summerfield · Matthew Botvinick · Andrea Tacchetti 🔗 |
-
|
The Good Shepherd: An Oracle Agent for Mechanism Design ( Poster ) > link | Jan Balaguer · Raphael Koster · Christopher Summerfield · Andrea Tacchetti 🔗 |
-
|
Learning Truthful, Efficient, and Welfare Maximizing Auction Rules ( Poster ) > link | Andrea Tacchetti · DJ Strouse · Marta Garnelo · Thore Graepel · Yoram Bachrach 🔗 |
-
|
MTLight: Efficient Multi-Task Reinforcement Learning for Traffic Signal Control ( Poster ) > link | Liwen Zhu · Peixi Peng · Zongqing Lu · Yonghong Tian 🔗 |
-
|
A Regret Minimization Approach to Multi-Agent Control ( Poster ) > link | Udaya Ghai · Udari Madhushani · Naomi Leonard · Elad Hazan 🔗 |
-
|
Global Convergence of Multi-Agent Policy Gradient in Markov Potential Games ( Poster ) > link | Stefanos Leonardos · Will Overman · Ioannis Panageas · Georgios Piliouras 🔗 |
-
|
A Game-Theoretic Approach for Improving Generalization Ability of TSP Solvers ( Poster ) > link | Chenguang Wang · Yaodong Yang · Oliver Slumbers · Congying Han · Tiande Guo · Haifeng Zhang · Jun Wang 🔗 |