Poster
in
Workshop: Tackling Climate Change with Machine Learning: Global Perspectives and Local Challenges
Machine Learning for Advanced Building Construction
Hilary Egan · Clement Fouquet · Chioke Harris
Keywords: [ Classification, regression, and supervised learning ] [ Buildings ]
High-efficiency retrofits can play a key role in reducing carbon emissions associated with buildings if processes can be scaled-up to reduce cost, time, and disruption. Here we demonstrate an artificial intelligence/computer vision (AI/CV)-enabled framework for converting exterior build scans and dimensional data directly into manufacturing and installation specifications for overclad panels. In our workflow point clouds associated with LiDAR-scanned buildings are segmented into a facade feature space, vectorized features are extracted using an iterative random-sampling consensus algorithm, and from this representation an optimal panel design plan satisfying manufacturing constraints is generated. This system and the corresponding construction process is demonstrated on a test facade structure constructed at the National Renewable Energy Laboratory (NREL). We also include a brief summary of a techno-economic study designed to estimate the potential energy and cost impact of this new system.