Skip to yearly menu bar Skip to main content

Long Oral
Workshop: Trustworthy Machine Learning for Healthcare

Self-Supervised Predictive Coding with Multimodal Fusion for Patient Deterioration Prediction in Fine-grained Time Resolution

Kwanhyung Lee · John Won · Heejung Hyun · Sangchul Hahn · Edward Choi · Joohyung Lee


Accurate time prediction of patients' critical events is crucial in urgent scenarios where timely decision-making is important. Though many studies have proposed automatic prediction methods using Electronic Health Records (EHR), their coarse-grained time resolutions limit their practical usage in urgent environments such as the emergency department (ED) and intensive care unit (ICU). Therefore, in this study, we propose an hourly prediction method based on self-supervised predictive coding and multi-modal fusion for two critical tasks: mortality and vasopressor need prediction. Through extensive experiments, we prove significant performance gains from both multi-modal fusion and self-supervised predictive regularization, most notably in far-future prediction, which becomes especially important in practice. Our uni-modal/bi-modal/bi-modal self-supervision scored 0.846/0.877/0.897 (0.824/0.855/0.886) and 0.817/0.820/0.858 (0.807/0.81/0.855) with mortality (far-future mortality) and with vasopressor need (far-future vasopressor need) prediction data in AUROC, respectively.

Chat is not available.