Skip to yearly menu bar Skip to main content


In-Person Poster presentation / top 5% paper

Efficient Conditionally Invariant Representation Learning

Roman Pogodin · Namrata Deka · Yazhe Li · Danica Sutherland · Victor Veitch · Arthur Gretton

MH1-2-3-4 #83

Keywords: [ conditional independence ] [ kernel methods ] [ Deep Learning and representational learning ]


Abstract: We introduce the Conditional Independence Regression CovariancE (CIRCE), a measure of conditional independence for multivariate continuous-valued variables. CIRCE applies as a regularizer in settings where we wish to learn neural features $\varphi(X)$ of data $X$ to estimate a target $Y$, while being conditionally independent of a distractor $Z$ given $Y$. Both $Z$ and $Y$ are assumed to be continuous-valued but relatively low dimensional, whereas $X$ and its features may be complex and high dimensional. Relevant settings include domain-invariant learning, fairness, and causal learning. The procedure requires just a single ridge regression from $Y$ to kernelized features of $Z$, which can be done in advance. It is then only necessary to enforce independence of $\varphi(X)$ from residuals of this regression, which is possible with attractive estimation properties and consistency guarantees. By contrast, earlier measures of conditional feature dependence require multiple regressions for each step of feature learning, resulting in more severe bias and variance, and greater computational cost. When sufficiently rich features are used, we establish that CIRCE is zero if and only if $\varphi(X) \perp \!\!\! \perp Z \mid Y$. In experiments, we show superior performance to previous methods on challenging benchmarks, including learning conditionally invariant image features. Code for image data experiments is available at github.com/namratadeka/circe.

Chat is not available.