Virtual presentation / poster accept
Sequential Gradient Coding For Straggler Mitigation
Nikhil Krishnan Muralee Krishnan · MohammadReza Ebrahimi · Ashish Khisti
Keywords: [ straggler mitigation ] [ distributed computation ] [ coded computing ] [ gradient coding ] [ General Machine Learning ]
Abstract:
In distributed computing, slower nodes (stragglers) usually become a bottleneck. Gradient Coding (GC), introduced by Tandon et al., is an efficient technique that uses principles of error-correcting codes to distribute gradient computation in the presence of stragglers. In this paper, we consider the distributed computation of a sequence of gradients $\{g(1),g(2),\ldots,g(J)\}$, where processing of each gradient $g(t)$ starts in round-$t$ and finishes by round-$(t+T)$. Here $T\geq 0$ denotes a delay parameter. For the GC scheme, coding is only across computing nodes and this results in a solution where $T=0$. On the other hand, having $T>0$ allows for designing schemes which exploit the temporal dimension as well. In this work, we propose two schemes that demonstrate improved performance compared to GC. Our first scheme combines GC with selective repetition of previously unfinished tasks and achieves improved straggler mitigation. In our second scheme, which constitutes our main contribution, we apply GC to a subset of the tasks and repetition for the remainder of the tasks. We then multiplex these two classes of tasks across workers and rounds in an adaptive manner, based on past straggler patterns. Using theoretical analysis, we demonstrate that our second scheme achieves significant reduction in the computational load. In our experiments, we study a practical setting of concurrently training multiple neural networks over an AWS Lambda cluster involving 256 worker nodes, where our framework naturally applies. We demonstrate that the latter scheme can yield a 16\% improvement in runtime over the baseline GC scheme, in the presence of naturally occurring, non-simulated stragglers.
Chat is not available.