Skip to yearly menu bar Skip to main content


Virtual presentation / poster accept

FIFA: Making Fairness More Generalizable in Classifiers Trained on Imbalanced Data

Zhun Deng · Jiayao Zhang · Linjun Zhang · Ting Ye · Yates Coley · Weijie J Su · James Y Zou

Keywords: [ fairness ] [ generalization ] [ Social Aspects of Machine Learning ]


Abstract:

Algorithmic fairness plays an important role in machine learning and imposing fairness constraints during learning is a common approach. However, many datasets are imbalanced in certain label classes (e.g. "healthy") and sensitive subgroups (e.g. "older patients"). Empirically, this imbalance leads to a lack of generalizability not only of classification but also of fairness properties, especially in over-parameterized models. For example, fairness-aware training may ensure equalized odds (EO) on the training data, but EO is far from being satisfied on new users. In this paper, we propose a theoretically-principled, yet {\bf F}lexible approach that is {\bf I}mbalance-{\bf F}airness-{\bf A}ware ({\bf FIFA}). Specifically, FIFA encourages both classification and fairness generalization and can be flexibly combined with many existing fair learning methods with logits-based losses. While our main focus is on EO, FIFA can be directly applied to achieve equalized opportunity (EqOpt); and under certain conditions, it can also be applied to other fairness notions. We demonstrate the power of FIFA by combining it with a popular fair classification algorithm, and the resulting algorithm achieves significantly better fairness generalization on several real-world datasets.

Chat is not available.