Skip to yearly menu bar Skip to main content


Virtual presentation / poster accept

Statistical Theory of Differentially Private Marginal-based Data Synthesis Algorithms

Ximing Li · Chendi Wang · Guang Cheng

Keywords: [ learning theory ] [ bayesian network ] [ differential privacy ] [ marginal-based method ] [ synthetic data ] [ Social Aspects of Machine Learning ]


Abstract: Marginal-based methods achieve promising performance in the synthetic data competition hosted by the National Institute of Standards and Technology (NIST). To deal with high-dimensional data, the distribution of synthetic data is represented by a probabilistic graphical model (e.g., a Bayesian network), while the raw data distribution is approximated by a collection of low-dimensional marginals. Differential privacy (DP) is guaranteed by introducing random noise to each low-dimensional marginal distribution. Despite its promising performance in practice, the statistical properties of marginal-based methods are rarely studied in the literature. In this paper, we study DP data synthesis algorithms based on Bayesian networks (BN) from a statistical perspective. We establish a rigorous accuracy guarantee for BN-based algorithms, where the errors are measured by the total variation (TV) distance or the L2L2 distance. Related to downstream machine learning tasks, an upper bound for the utility error of the DP synthetic data is also derived. To complete the picture, we establish a lower bound for TV accuracy that holds for every ϵϵ-DP synthetic data generator.

Chat is not available.