Skip to yearly menu bar Skip to main content


In-Person Poster presentation / top 5% paper

Draft, Sketch, and Prove: Guiding Formal Theorem Provers with Informal Proofs

Qiaochu Jiang · Sean Welleck · Jin Zhou · Timothée Lacroix · Jiacheng Liu · Wenda Li · Mateja Jamnik · Guillaume Lample · Yuhuai Wu

MH1-2-3-4 #69

Keywords: [ Machine Learning for Sciences ]


Abstract: The formalization of existing mathematical proofs is a notoriously difficult process. Despite decades of research on automation and proof assistants, writing formal proofs remains arduous and only accessible to a few experts. While previous studies to automate formalization focused on powerful search algorithms, no attempts were made to take advantage of available informal proofs. In this work, we introduce Draft, Sketch, and Prove (DSP), a method that maps informal proofs to formal proof sketches, and uses the sketches to guide an automated prover by directing its search to easier sub-problems. We investigate two relevant setups where informal proofs are either written by humans or generated by a language model. Our experiments and ablation studies show that large language models are able to produce well-structured formal sketches that follow the same reasoning steps as the informal proofs. Guiding an automated prover with these sketches enhances its performance from $20.9\%$ to $39.3\%$ on a collection of mathematical competition problems.

Chat is not available.