Improving Deep Regression with Ordinal Entropy
Shihao Zhang · Linlin Yang · Michael Bi Mi · Xiaoxu Zheng · Angela Yao
Keywords:
counting
entropy
age estimation
depth estimation
classification
regression
Deep Learning and representational learning
2023 In-Person Poster presentation / poster accept
Abstract
In computer vision, it is often observed that formulating regression problems as a classification task yields better performance. We investigate this curious phenomenon and provide a derivation to show that classification, with the cross-entropy loss, outperforms regression with a mean squared error loss in its ability to learn high-entropy feature representations. Based on the analysis, we propose an ordinal entropy loss to encourage higher-entropy feature spaces while maintaining ordinal relationships to improve the performance of regression tasks. Experiments on synthetic and real-world regression tasks demonstrate the importance and benefits of increasing entropy for regression.
Video
Chat is not available.
Successful Page Load