Skip to yearly menu bar Skip to main content


Virtual presentation / poster accept

Approximate Nearest Neighbor Search through Modern Error-Correcting Codes

Noam Touitou · Nissim Halabi

Keywords: [ Locality-Sensitive Hashing ] [ LSH ] [ Polar Codes ] [ Nearest-Neighbor Search ] [ similarity search ] [ General Machine Learning ]


Abstract:

A locality-sensitive hash (or LSH) is a function that can efficiently map dataset points into a latent space while preserving pairwise distances. Such LSH functions have been used in approximate nearest-neighbor search (ANNS) in the following classic way, which we call classic hash clustering (CHC): first, the dataset points are hashed into a low-dimensional binary space using the LSH function; then, the points are clustered by these hash values. Upon receiving a query, its nearest neighbors are sought within its hash-cluster and nearby hash-clusters (i.e., multi-probe). However, CHC mandates a low-dimensional latent space for the LSH function, which distorts distances from the (high-dimensional) original real space; this results in inferior recall. This is often mitigated through using multiple hash tables at additional storage and memory costs.In this paper, we introduce a better way of using LSH functions for ANNS. Our method, called the Polar Code Nearest-Neighbor (PCNN) algorithm, uses modern error-correcting codes (specifically polar codes) to maintain a manageable number of clusters inside a high-dimensional latent space. Allowing the LSH function to embed into this high-dimensional latent space results in higher recall, as the embedding faithfully captures distances in the original space. The crux of PCNN is using polar codes for probing: we present a multi-probe scheme for PCNN which uses efficient list-decoding methods for polar codes, with time complexity independent of the dataset size. Fixing the choice of LSH, experiment results demonstrate significant performance gains of PCNN over CHC; in particular, PCNN with a single table outperforms CHC with multiple tables, obviating the need for large memory and storage.

Chat is not available.