Skip to yearly menu bar Skip to main content


Virtual presentation / poster accept

Advancing Radiograph Representation Learning with Masked Record Modeling

Hong-Yu Zhou · Chenyu Lian · Liansheng Wang · Yizhou Yu

Keywords: [ Radiograph ] [ representation learning ] [ medical imaging ] [ self-supervised learning ] [ Machine Learning for Sciences ]


Abstract: Modern studies in radiograph representation learning (R$^2$L) rely on either self-supervision to encode invariant semantics or associated radiology reports to incorporate medical expertise, while the complementarity between them is barely noticed. To explore this, we formulate the self- and report-completion as two complementary objectives and present a unified framework based on masked record modeling (MRM). In practice, MRM reconstructs masked image patches and masked report tokens following a multi-task scheme to learn knowledge-enhanced semantic representations. With MRM pre-training, we obtain pre-trained models that can be well transferred to various radiography tasks. Specifically, we find that MRM offers superior performance in label-efficient fine-tuning. For instance, MRM achieves 88.5% mean AUC on CheXpert using 1% labeled data, outperforming previous R$^2$L methods with 100% labels. On NIH ChestX-ray, MRM outperforms the best performing counterpart by about 3% under small labeling ratios. Besides, MRM surpasses self- and report-supervised pre-training in identifying the pneumonia type and the pneumothorax area, sometimes by large margins.

Chat is not available.