Virtual presentation / poster accept
Learning without Prejudices: Continual Unbiased Learning via Benign and Malignant Forgetting
Myeongho Jeon · Hyoje Lee · Yedarm Seong · Myungjoo Kang
Keywords: [ continual learning ] [ representation learning ] [ unbiased learning ] [ Deep Learning and representational learning ]
Although machine learning algorithms have achieved state-of-the-art status in image classification, recent studies have substantiated that the ability of the models to learn several tasks in sequence, termed continual learning (CL), often suffers from abrupt degradation of performance from previous tasks. A large body of CL frameworks has been devoted to alleviating this issue. However, we observe that forgetting phenomena in CL are not always unfavorable, especially when there is bias (spurious correlation) in training data. We term such type of forgetting benign forgetting, and categorize detrimental forgetting as malignant forgetting. Based on this finding, our objective in this study is twofold: (a) to discourage malignant forgetting by generating previous representations, and (b) encourage benign forgetting by employing contrastive learning in conjunction with feature-level augmentation. Extensive evaluations of biased experimental setups demonstrate that our proposed method, Learning without Prejudices, is effective for continual unbiased learning.