Skip to yearly menu bar Skip to main content


Virtual presentation / poster accept

Predicting Cellular Responses with Variational Causal Inference and Refined Relational Information

Yulun Wu · Rob Barton · Zichen Wang · Vassilis N. Ioannidis · Carlo De Donno · Layne Price · Luis Voloch · George Karypis

Keywords: [ asymptotic statistics ] [ single-cell perturbation ] [ variational bayes ] [ causal inference ] [ graph neural network ] [ Machine Learning for Sciences ]


Abstract:

Predicting the responses of a cell under perturbations may bring important benefits to drug discovery and personalized therapeutics. In this work, we propose a novel graph variational Bayesian causal inference framework to predict a cell's gene expressions under counterfactual perturbations (perturbations that this cell did not factually receive), leveraging information representing biological knowledge in the form of gene regulatory networks (GRNs) to aid individualized cellular response predictions. Aiming at a data-adaptive GRN, we also developed an adjacency matrix updating technique for graph convolutional networks and used it to refine GRNs during pre-training, which generated more insights on gene relations and enhanced model performance. Additionally, we propose a robust estimator within our framework for the asymptotically efficient estimation of marginal perturbation effect, which is yet to be carried out in previous works. With extensive experiments, we exhibited the advantage of our approach over state-of-the-art deep learning models for individual response prediction.

Chat is not available.