Virtual presentation / top 25% paper
Exploring Active 3D Object Detection from a Generalization Perspective
Yadan Luo · Zhuoxiao Chen · Zijian Wang · Xin Yu · Zi Huang · Mahsa Baktashmotlagh
Keywords: [ Lidar Point Clouds ] [ 3D Object Detection ] [ active learning ] [ General Machine Learning ]
Abstract:
To alleviate the high annotation cost in LiDAR-based 3D object detection, active learning is a promising solution that learns to select only a small portion of unlabeled data to annotate, without compromising model performance. Our empirical study, however, suggests that mainstream uncertainty-based and diversity-based active learning policies are not effective when applied in the 3D detection task, as they fail to balance the trade-off between point cloud informativeness and box-level annotation costs. To overcome this limitation, we jointly investigate three novel criteria in our framework CRB for point cloud acquisition - label conciseness, feature representativeness and geometric balance, which hierarchically filters out the point clouds of redundant 3D bounding box labels, latent features and geometric characteristics (e.g., point cloud density) from the unlabeled sample pool and greedily selects informative ones with fewer objects to annotate. Our theoretical analysis demonstrates that the proposed criteria aligns the marginal distributions of the selected subset and the prior distributions of the unseen test set, and minimizes the upper bound of the generalization error. To validate the effectiveness and applicability of CRB, we conduct extensive experiments on the two benchmark 3D object detection datasets of KITTI and Waymo and examine both one-stage (i.e., Second) and two-stage 3D detector (i.e., PV-RCNN). Experiments evidence that the proposed approach outperforms existing active learning strategies and achieves fully supervised performance requiring $1\%$ and $8\%$ annotations of bounding boxes and point clouds, respectively.
Chat is not available.