firstbacksecondback
34 Results
Poster
|
Representational Dissimilarity Metric Spaces for Stochastic Neural Networks Lyndon Duong · Jingyang Zhou · Josue Nassar · Jules Berman · Jeroen Olieslagers · Alex Williams |
||
Poster
|
Mon 7:30 |
Exploring perceptual straightness in learned visual representations Anne Harrington · Vasha DuTell · Ayush Tewari · Mark Hamilton · Simon Stent · Ruth Rosenholtz · William Freeman |
|
Poster
|
Mon 2:30 |
Understanding Neural Coding on Latent Manifolds by Sharing Features and Dividing Ensembles Martin Bjerke · Lukas Schott · Kristopher Jensen · Claudia Battistin · David Klindt · Benjamin Dunn |
|
Poster
|
Sparse Distributed Memory is a Continual Learner Trenton Bricken · Xander Davies · Deepak Singh · Dmitry Krotov · Gabriel Kreiman |
||
Poster
|
Backpropagation at the Infinitesimal Inference Limit of Energy-Based Models: Unifying Predictive Coding, Equilibrium Propagation, and Contrastive Hebbian Learning Beren Millidge · Yuhang Song · Tommaso Salvatori · Thomas Lukasiewicz · Rafal Bogacz |
||
Poster
|
Mon 2:30 |
A probabilistic framework for task-aligned intra- and inter-area neural manifold estimation Edoardo Balzani · Jean-Paul Noel · Pedro Herrero-Vidal · Dora Angelaki · Cristina Savin |
|
Oral
|
Mon 1:00 |
A probabilistic framework for task-aligned intra- and inter-area neural manifold estimation Edoardo Balzani · Jean-Paul Noel · Pedro Herrero-Vidal · Dora Angelaki · Cristina Savin |
|
Poster
|
Words are all you need? Language as an approximation for human similarity judgments Raja Marjieh · Pol van Rijn · Ilia Sucholutsky · Theodore Sumers · Harin Lee · Thomas L. Griffiths · Nori Jacoby |
||
Poster
|
Hebbian and Gradient-based Plasticity Enables Robust Memory and Rapid Learning in RNNs Yu Duan · Zhongfan Jia · Qian Li · Yi Zhong · Kaisheng Ma |
||
Poster
|
Mon 2:30 |
How gradient estimator variance and bias impact learning in neural networks Arna Ghosh · Yuhan Helena Liu · Guillaume Lajoie · Konrad P Kording · Blake A Richards |