Skip to yearly menu bar Skip to main content


Search All 2023 Events
 

34 Results

<<   <   Page 3 of 3   >>   >
Poster
Representational Dissimilarity Metric Spaces for Stochastic Neural Networks
Lyndon Duong · Jingyang Zhou · Josue Nassar · Jules Berman · Jeroen Olieslagers · Alex Williams
Poster
Mon 7:30 Exploring perceptual straightness in learned visual representations
Anne Harrington · Vasha DuTell · Ayush Tewari · Mark Hamilton · Simon Stent · Ruth Rosenholtz · William Freeman
Poster
Mon 2:30 Understanding Neural Coding on Latent Manifolds by Sharing Features and Dividing Ensembles
Martin Bjerke · Lukas Schott · Kristopher Jensen · Claudia Battistin · David Klindt · Benjamin Dunn
Poster
Sparse Distributed Memory is a Continual Learner
Trenton Bricken · Xander Davies · Deepak Singh · Dmitry Krotov · Gabriel Kreiman
Poster
Backpropagation at the Infinitesimal Inference Limit of Energy-Based Models: Unifying Predictive Coding, Equilibrium Propagation, and Contrastive Hebbian Learning
Beren Millidge · Yuhang Song · Tommaso Salvatori · Thomas Lukasiewicz · Rafal Bogacz
Poster
Mon 2:30 A probabilistic framework for task-aligned intra- and inter-area neural manifold estimation
Edoardo Balzani · Jean-Paul Noel · Pedro Herrero-Vidal · Dora Angelaki · Cristina Savin
Oral
Mon 1:00 A probabilistic framework for task-aligned intra- and inter-area neural manifold estimation
Edoardo Balzani · Jean-Paul Noel · Pedro Herrero-Vidal · Dora Angelaki · Cristina Savin
Poster
Words are all you need? Language as an approximation for human similarity judgments
Raja Marjieh · Pol van Rijn · Ilia Sucholutsky · Theodore Sumers · Harin Lee · Thomas L. Griffiths · Nori Jacoby
Poster
Hebbian and Gradient-based Plasticity Enables Robust Memory and Rapid Learning in RNNs
Yu Duan · Zhongfan Jia · Qian Li · Yi Zhong · Kaisheng Ma
Poster
Mon 2:30 How gradient estimator variance and bias impact learning in neural networks
Arna Ghosh · Yuhan Helena Liu · Guillaume Lajoie · Konrad P Kording · Blake A Richards