Skip to yearly menu bar Skip to main content


Search All 2023 Events
 

16 Results

<<   <   Page 1 of 2   >   >>
Poster
Achieve the Minimum Width of Neural Networks for Universal Approximation
Yongqiang Cai
Poster
Offline Reinforcement Learning with Differentiable Function Approximation is Provably Efficient
Ming Yin · Mengdi Wang · Yu-Xiang Wang
Poster
Near-Optimal Deployment Efficiency in Reward-Free Reinforcement Learning with Linear Function Approximation
Dan Qiao · Yu-Xiang Wang
Poster
Mon 7:30 Constructive TT-representation of the tensors given as index interaction functions with applications
Gleb Ryzhakov · Ivan Oseledets
Poster
Optimal Conservative Offline RL with General Function Approximation via Augmented Lagrangian
Paria Rashidinejad · Hanlin Zhu · Kunhe Yang · Stuart Russell · Jiantao Jiao
Poster
The Role of Coverage in Online Reinforcement Learning
Tengyang Xie · Dylan Foster · Yu Bai · Nan Jiang · Sham Kakade
Poster
Nearly Minimax Optimal Offline Reinforcement Learning with Linear Function Approximation: Single-Agent MDP and Markov Game
Wei Xiong · Han Zhong · Chengshuai Shi · Cong Shen · Liwei Wang · Tong Zhang
Workshop
Thu 5:00 Diffusion Models are Minimax Optimal Distribution Estimators
Kazusato Oko · Akiyama Shunta · Taiji Suzuki
Workshop
Thu 4:00 Diffusion Models are Minimax Optimal Distribution Estimators
Kazusato Oko · Akiyama Shunta · Taiji Suzuki
Poster
Tue 7:30 The Implicit Bias of Minima Stability in Multivariate Shallow ReLU Networks
Mor Shpigel Nacson · Rotem Mulayoff · Greg Ongie · Tomer Michaeli · Daniel Soudry
Poster
Learning Adversarial Linear Mixture Markov Decision Processes with Bandit Feedback and Unknown Transition
Canzhe Zhao · Ruofeng Yang · Baoxiang Wang · Shuai Li
Poster
Sample Complexity of Nonparametric Off-Policy Evaluation on Low-Dimensional Manifolds using Deep Networks
Xiang Ji · Minshuo Chen · Mengdi Wang · Tuo Zhao