Oral Session
|
Mon 1:00
|
Oral 1 Track 2: Machine Learning for Sciences
|
|
Oral Session
|
Mon 1:00
|
Oral 1 Track 3: Neuroscience and Cognitive Science & General Machine Learning
|
|
Poster
|
Mon 2:30
|
Learning to Estimate Shapley Values with Vision Transformers
Ian Covert · Chanwoo Kim · Su-In Lee
|
|
Oral
|
Mon 2:00
|
Learning to Estimate Shapley Values with Vision Transformers
Ian Covert · Chanwoo Kim · Su-In Lee
|
|
Poster
|
|
BSTT: A Bayesian Spatial-Temporal Transformer for Sleep Staging
Yuchen Liu · Ziyu Jia
|
|
Poster
|
|
Learning Vortex Dynamics for Fluid Inference and Prediction
Yitong Deng · Koven Yu · Jiajun Wu · Bo Zhu
|
|
Oral Session
|
Tue 6:00
|
Oral 4 Track 5: Machine Learning for Sciences & Probabilistic Methods
|
|
Workshop
|
|
Machine learning-assisted close-set X-ray diffraction phase identification of transition metals
Maksim Zhdanov · Andrey Zhdanov
|
|
Workshop
|
Thu 8:00
|
Machine learning-guided directed evolution of functional proteins
Andrew Ferguson
|
|
Poster
|
|
PiFold: Toward effective and efficient protein inverse folding
Zhangyang Gao · Cheng Tan · Stan Z Li
|
|
Poster
|
|
A Learning Based Hypothesis Test for Harmful Covariate Shift
Tom Ginsberg · Zhongyuan Liang · Rahul G. Krishnan
|
|
Poster
|
Mon 2:30
|
Valid P-Value for Deep Learning-driven Salient Region
Daiki Miwa · Vo Nguyen Le Duy · Ichiro Takeuchi
|
|