Skip to yearly menu bar Skip to main content


Session

Oral 2 Track 3: Generative models

AD12

Abstract:

Chat is not available.

Mon 1 May 6:00 - 6:10 PDT

In-Person Oral presentation / top 25% paper
Diffusion Posterior Sampling for General Noisy Inverse Problems

Hyungjin Chung · Jeongsol Kim · Michael McCann · Marc Klasky · Jong Ye

Diffusion models have been recently studied as powerful generative inverse problem solvers, owing to their high quality reconstructions and the ease of combining existing iterative solvers. However, most works focus on solving simple linear inverse problems in noiseless settings, which significantly under-represents the complexity of real-world problems. In this work, we extend diffusion solvers to efficiently handle general noisy (non)linear inverse problems via the Laplace approximation of the posterior sampling. Interestingly, the resulting posterior sampling scheme is a blended version of diffusion sampling with the manifold constrained gradient without a strict measurement consistency projection step, yielding a more desirable generative path in noisy settings compared to the previous studies. Our method demonstrates that diffusion models can incorporate various measurement noise statistics such as Gaussian and Poisson, and also efficiently handle noisy nonlinear inverse problems such as Fourier phase retrieval and non-uniform deblurring.

Mon 1 May 6:10 - 6:20 PDT

In-Person Oral presentation / top 25% paper
Prompt-to-Prompt Image Editing with Cross-Attention Control

Amir Hertz · Ron Mokady · Jay Tenenbaum · Kfir Aberman · Yael Pritch · Daniel Cohen-Or

Recent large-scale text-driven synthesis diffusion models have attracted much attention thanks to their remarkable capabilities of generating highly diverse images that follow given text prompts. Therefore, it is only natural to build upon these synthesis models to provide text-driven image editing capabilities. However, Editing is challenging for these generative models, since an innate property of an editing technique is to preserve some content from the original image, while in the text-based models, even a small modification of the text prompt often leads to a completely different outcome. State-of-the-art methods mitigate this by requiring the users to provide a spatial mask to localize the edit, hence, ignoring the original structure and content within the masked region. In this paper, we pursue an intuitive prompt-to-prompt editing framework, where the edits are controlled by text only. We analyze a text-conditioned model in depth and observe that the cross-attention layers are the key to controlling the relation between the spatial layout of the image to each word in the prompt. With this observation, we propose to control the attention maps along the diffusion process. Our approach enables us to monitor the synthesis process by editing the textual prompt only, paving the way to a myriad of caption-based editing applications such as localized editing by replacing a word, global editing by adding a specification, and even controlling the extent to which a word is reflected in the image. We present our results over diverse images and prompts with different text-to-image models, demonstrating high-quality synthesis and fidelity to the edited prompts.

Mon 1 May 6:20 - 6:30 PDT

In-Person Oral presentation / top 25% paper
Sequential Latent Variable Models for Few-Shot High-Dimensional Time-Series Forecasting

Xiajun Jiang · Ryan Missel · Zhiyuan Li · Linwei Wang

Modern applications increasingly require learning and forecasting latent dynamics from high-dimensional time-series. Compared to univariate time-series forecasting, this adds a new challenge of reasoning about the latent dynamics of an unobserved abstract state. Sequential latent variable models (LVMs) present an attractive solution, although existing works either struggle with long-term forecasting or have difficulty learning across diverse dynamics. In this paper, we first present a conceptual framework of sequential LVMs to unify existing works, contrast their fundamental limitations, and identify an intuitive solution to long-term forecasting for diverse dynamics via meta-learning. We then present the first framework of few-shot forecasting for high-dimensional time-series: instead of learning a single dynamic function, we leverage data of diverse dynamics and learn to adapt latent dynamic functions to few-shot support series. This is realized via Bayesian meta-learning underpinned by: 1) a latent dynamic function conditioned on knowledge derived from few-shot support series, and 2) a meta-model that learns to extract such dynamic-specific knowledge via feed-forward embedding of support set. We compared the presented framework with a comprehensive set of baseline models trained 1) globally on the large meta-training set with diverse dynamics, and 2) individually on single dynamics, both with and without fine-tuning to k-shot support series used by the meta-models. We demonstrated that the presented framework is agnostic to the latent dynamic function of choice and, at meta-test time, is able to forecast for new dynamics given variable-shot of support series.

Mon 1 May 6:30 - 6:40 PDT

In-Person Oral presentation / top 25% paper
Diffusion Models Already Have A Semantic Latent Space

Mingi Kwon · Jaeseok Jeong · Youngjung Uh

Diffusion models achieve outstanding generative performance in various domains. Despite their great success, they lack semantic latent space which is essential for controlling the generative process. To address the problem, we propose asymmetric reverse process (Asyrp) which discovers the semantic latent space in frozen pretrained diffusion models. Our semantic latent space, named h-space, has nice properties for accommodating semantic image manipulation: homogeneity, linearity, robustness, and consistency across timesteps. In addition, we measure editing strength and quality deficiency of a generative process at timesteps to provide a principled design of the process for versatility and quality improvements. Our method is applicable to various architectures (DDPM++, iDDPM, and ADM) and datasets (CelebA-HQ, AFHQ-dog, LSUN-church, LSUN-bedroom, and METFACES).

Mon 1 May 6:40 - 6:50 PDT

In-Person Oral presentation / top 5% paper
Outstanding Paper
DreamFusion: Text-to-3D using 2D Diffusion

Ben Poole · Ajay Jain · Jonathan T. Barron · Ben Mildenhall

Recent breakthroughs in text-to-image synthesis have been driven by diffusion models trained on billions of image-text pairs. Adapting this approach to 3D synthesis would require large-scale datasets of labeled 3D or multiview data and efficient architectures for denoising 3D data, neither of which currently exist. In this work, we circumvent these limitations by using a pretrained 2D text-to-image diffusion model to perform text-to-3D synthesis. We introduce a loss based on probability density distillation that enables the use of a 2D diffusion model as a prior for optimization of a parametric image generator. Using this loss in a DeepDream-like procedure, we optimize a randomly-initialized 3D model (a Neural Radiance Field, or NeRF) via gradient descent such that its 2D renderings from random angles achieve a low loss. The resulting 3D model of the given text can be viewed from any angle, relit by arbitrary illumination, or composited into any 3D environment. Our approach requires no 3D training data and no modifications to the image diffusion model, demonstrating the effectiveness of pretrained image diffusion models as priors.

Mon 1 May 6:50 - 7:00 PDT

In-Person Oral presentation / top 5% paper
Sampling is as easy as learning the score: theory for diffusion models with minimal data assumptions

Sitan Chen · Sinho Chewi · Jerry Li · Yuanzhi Li · Adil Salim · Anru Zhang

We provide theoretical convergence guarantees for score-based generative models (SGMs) such as denoising diffusion probabilistic models (DDPMs), which constitute the backbone of large-scale real-world generative models such as DALL$\cdot$E 2. Our main result is that, assuming accurate score estimates, such SGMs can efficiently sample from essentially any realistic data distribution. In contrast to prior works, our results (1) hold for an $L^2$-accurate score estimate (rather than $L^\infty$-accurate); (2) do not require restrictive functional inequality conditions that preclude substantial non-log-concavity; (3) scale polynomially in all relevant problem parameters; and (4) match state-of-the-art complexity guarantees for discretization of the Langevin diffusion, provided that the score error is sufficiently small. We view this as strong theoretical justification for the empirical success of SGMs. We also examine SGMs based on the critically damped Langevin diffusion (CLD). Contrary to conventional wisdom, we provide evidence that the use of the CLD does *not* reduce the complexity of SGMs.