Skip to yearly menu bar Skip to main content


Session

Oral 2 Track 5: Generative models & Theory

AD4

Abstract:

Chat is not available.

Mon 1 May 6:00 - 6:10 PDT

In-Person Oral presentation / top 25% paper
Neural Optimal Transport

Alexander Korotin · Daniil Selikhanovych · Evgeny Burnaev

We present a novel neural-networks-based algorithm to compute optimal transport maps and plans for strong and weak transport costs. To justify the usage of neural networks, we prove that they are universal approximators of transport plans between probability distributions. We evaluate the performance of our optimal transport algorithm on toy examples and on the unpaired image-to-image translation.

Mon 1 May 6:10 - 6:20 PDT

In-Person Oral presentation / top 25% paper
Implicit Bias of Large Depth Networks: a Notion of Rank for Nonlinear Functions

Arthur Jacot

We show that the representation cost of fully connected neural networks with homogeneous nonlinearities - which describes the implicit bias in function space of networks with $L_2$-regularization or with losses such as the cross-entropy - converges as the depth of the network goes to infinity to a notion of rank over nonlinear functions. We then inquire under which conditions the global minima of the loss recover the `true' rank of the data: we show that for too large depths the global minimum will be approximately rank 1 (underestimating the rank); we then argue that there is a range of depths which grows with the number of datapoints where the true rank is recovered. Finally, we discuss the effect of the rank of a classifier on the topology of the resulting class boundaries and show that autoencoders with optimal nonlinear rank are naturally denoising.

Mon 1 May 6:20 - 6:30 PDT

In-Person Oral presentation / top 25% paper
Effects of Graph Convolutions in Multi-layer Networks

Aseem Baranwal · Kimon Fountoulakis · Aukosh Jagannath

Graph Convolutional Networks (GCNs) are one of the most popular architectures that are used to solve classification problems accompanied by graphical information. We present a rigorous theoretical understanding of the effects of graph convolutions in multi-layer networks. We study these effects through the node classification problem of a non-linearly separable Gaussian mixture model coupled with a stochastic block model. First, we show that a single graph convolution expands the regime of the distance between the means where multi-layer networks can classify the data by a factor of at least $1/\sqrt[4]{\rm deg}$, where ${\rm deg}$ denotes the expected degree of a node. Second, we show that with a slightly stronger graph density, two graph convolutions improve this factor to at least $1/\sqrt[4]{n}$, where $n$ is the number of nodes in the graph. Finally, we provide both theoretical and empirical insights into the performance of graph convolutions placed in different combinations among the layers of a neural network, concluding that the performance is mutually similar for all combinations of the placement. We present extensive experiments on both synthetic and real-world data that illustrate our results.

Mon 1 May 6:40 - 6:50 PDT

In-Person Oral presentation / top 5% paper
Modeling content creator incentives on algorithm-curated platforms

Jiri Hron · Karl Krauth · Michael Jordan · Niki Kilbertus · Sarah Dean

Content creators compete for user attention. Their reach crucially depends on algorithmic choices made by developers on online platforms. To maximize exposure, many creators adapt strategically, as evidenced by examples like the sprawling search engine optimization industry. This begets competition for the finite user attention pool. We formalize these dynamics in what we call an exposure game, a model of incentives induced by modern algorithms including factorization and (deep) two-tower architectures. We prove that seemingly innocuous algorithmic choices—e.g., non-negative vs. unconstrained factorization—significantly affect the existence and character of (Nash) equilibria in exposure games. We proffer use of creator behavior models like ours for an (ex-ante) pre-deployment audit. Such an audit can identify misalignment between desirable and incentivized content, and thus complement post-hoc measures like content filtering and moderation. To this end, we propose tools for numerically finding equilibria in exposure games, and illustrate results of an audit on the MovieLens and LastFM datasets. Among else, we find that the strategically produced content exhibits strong dependence between algorithmic exploration and content diversity, and between model expressivity and bias towards gender-based user and creator groups.

Mon 1 May 6:50 - 7:00 PDT

In-Person Oral presentation / top 25% paper
Optimal Transport for Offline Imitation Learning

Yicheng Luo · Zhengyao Jiang · samuel cohen · Edward Grefenstette · Marc Deisenroth

With the advent of large datasets, offline reinforcement learning is a promising framework for learning good decision-making policies without the need to interact with the real environment.However, offline RL requires the dataset to be reward-annotated, which presents practical challenges when reward engineering is difficult or when obtaining reward annotations is labor-intensive.In this paper, we introduce Optimal Transport Relabeling (OTR), an imitation learning algorithm that can automatically relabel offline data of mixed and unknown quality with rewards from a few good demonstrations. OTR's key idea is to use optimal transport to compute an optimal alignment between an unlabeled trajectory in the dataset and an expert demonstration to obtain a similarity measure that can be interpreted as a reward, which can then be used by an offline RL algorithm to learn the policy. OTR is easy to implement and computationally efficient. On D4RL benchmarks, we demonstrate that OTR with a single demonstration can consistently match the performance of offline RL with ground-truth rewards.