Skip to yearly menu bar Skip to main content


Session

Oral 4 Track 1: Unsupervised and Self-supervised learning

AD11

Abstract:

Chat is not available.

Tue 2 May 6:00 - 6:10 PDT

In-Person Oral presentation / top 25% paper
Minimalistic Unsupervised Representation Learning with the Sparse Manifold Transform

Yubei Chen · Zeyu Yun · Yi Ma · Bruno Olshausen · Yann LeCun

We describe a minimalistic and interpretable method for unsupervised representation learning that does not require data augmentation, hyperparameter tuning, or other engineering designs, but nonetheless achieves performance close to the state-of-the-art (SOTA) SSL methods. Our approach leverages the sparse manifold transform, which unifies sparse coding, manifold learning, and slow feature analysis. With a one-layer deterministic (one training epoch) sparse manifold transform, it is possible to achieve $99.3\%$ KNN top-1 accuracy on MNIST, $81.1\%$ KNN top-1 accuracy on CIFAR-10, and $53.2\%$ on CIFAR-100. With simple gray-scale augmentation, the model achieves $83.2\%$ KNN top-1 accuracy on CIFAR-10 and $57\%$ on CIFAR-100. These results significantly close the gap between simplistic ``white-box'' methods and SOTA methods. We also provide visualization to illustrate how an unsupervised representation transform is formed. The proposed method is closely connected to latent-embedding self-supervised methods and can be treated as the simplest form of VICReg. Though a small performance gap remains between our simple constructive model and SOTA methods, the evidence points to this as a promising direction for achieving a principled and white-box approach to unsupervised representation learning, which has potential to significantly improve learning efficiency.

Tue 2 May 6:10 - 6:20 PDT

In-Person Oral presentation / top 25% paper
AANG : Automating Auxiliary Learning

Lucio Dery · Paul Michel · Mikhail Khodak · Graham Neubig · Ameet Talwalkar

Auxiliary objectives, supplementary learning signals that are introduced to help aid learning on data-starved or highly complex end-tasks, are commonplace in machine learning. Whilst much work has been done to formulate useful auxiliary objectives, their construction is still an art which proceeds by slow and tedious hand-design. Intuition for how and when these objectives improve end-task performance has also had limited theoretical backing. In this work, we present an approach for automatically generating a suite of auxiliary objectives. We achieve this by deconstructing existing objectives within a novel unified taxonomy, identifying connections between them, and generating new ones based on the uncovered structure. Next, we theoretically formalize widely-held intuitions about how auxiliary learning improves generalization on the end-task. This leads us to a principled and efficient algorithm for searching the space of generated objectives to find those most useful to a specified end-task.With natural language processing (NLP) as our domain of study, we demonstrate that our automated auxiliary learning pipeline leads to strong improvements over competitive baselines across continued training experiments on a pre-trained model on 5 NLP end-tasks.

Tue 2 May 6:20 - 6:30 PDT

In-Person Oral presentation / top 25% paper
STUNT: Few-shot Tabular Learning with Self-generated Tasks from Unlabeled Tables

Jaehyun Nam · Jihoon Tack · Kyungmin Lee · Hankook Lee · Jinwoo Shin

Learning with few labeled tabular samples is often an essential requirement for industrial machine learning applications as varieties of tabular data suffer from high annotation costs or have difficulties in collecting new samples for novel tasks. Despite the utter importance, such a problem is quite under-explored in the field of tabular learning, and existing few-shot learning schemes from other domains are not straightforward to apply, mainly due to the heterogeneous characteristics of tabular data. In this paper, we propose a simple yet effective framework for few-shot semi-supervised tabular learning, coined Self-generated Tasks from UNlabeled Tables (STUNT). Our key idea is to self-generate diverse few-shot tasks by treating randomly chosen columns as a target label. We then employ a meta-learning scheme to learn generalizable knowledge with the constructed tasks. Moreover, we introduce an unsupervised validation scheme for hyperparameter search (and early stopping) by generating a pseudo-validation set using STUNT from unlabeled data. Our experimental results demonstrate that our simple framework brings significant performance gain under various tabular few-shot learning benchmarks, compared to prior semi- and self-supervised baselines. Code is available at https://github.com/jaehyun513/STUNT.

Tue 2 May 6:30 - 6:40 PDT

In-Person Oral presentation / top 25% paper
Task-customized Masked Autoencoder via Mixture of Cluster-conditional Experts

Zhili LIU · Kai Chen · Jianhua Han · Lanqing HONG · Hang Xu · Zhenguo Li · James Kwok

Masked Autoencoder (MAE) is a prevailing self-supervised learning method that achieves promising results in model pre-training. However, when the various downstream tasks have data distributions different from the pre-training data, the semantically irrelevant pre-training information might result in negative transfer, impeding MAE’s scalability. To address this issue, we propose a novel MAE-based pre-training paradigm, Mixture of Cluster-conditional Experts (MoCE), which can be trained once but provides customized pre-training models for diverse downstream tasks. Different from the mixture of experts (MoE), our MoCE trains each expert only with semantically relevant images by using cluster-conditional gates. Thus, each downstream task can be allocated to its customized model pre-trained with data most similar to the downstream data. Experiments on a collection of 11 downstream tasks show that MoCE outperforms the vanilla MAE by 2.45\% on average. It also obtains new state-of-the-art self-supervised learning results on detection and segmentation.

Tue 2 May 6:40 - 6:50 PDT

In-Person Oral presentation / top 25% paper
When Source-Free Domain Adaptation Meets Learning with Noisy Labels

Li Yi · Gezheng Xu · Pengcheng Xu · Jiaqi Li · Ruizhi Pu · Charles Ling · Ian McLeod · Boyu Wang

Recent state-of-the-art source-free domain adaptation (SFDA) methods have focused on learning meaningful cluster structures in the feature space, which have succeeded in adapting the knowledge from source domain to unlabeled target domain without accessing the private source data. However, existing methods rely on the pseudo-labels generated by source models that can be noisy due to domain shift. In this paper, we study SFDA from the perspective of learning with label noise (LLN). Unlike the label noise in the conventional LLN scenario, we prove that the label noise in SFDA follows a different distribution assumption. We also prove that such a difference makes existing LLN methods that rely on their distribution assumptions unable to address the label noise in SFDA. Empirical evidence suggests that only marginal improvements are achieved when applying the existing LLN methods to solve the SFDA problem. On the other hand, although there exists a fundamental difference between the label noise in the two scenarios, we demonstrate theoretically that the early-time training phenomenon (ETP), which has been previously observed in conventional label noise settings, can also be observed in the SFDA problem. Extensive experiments demonstrate significant improvements to existing SFDA algorithms by leveraging ETP to address the label noise in SFDA.

Tue 2 May 6:50 - 7:00 PDT

In-Person Oral presentation / top 5% paper
Towards Stable Test-time Adaptation in Dynamic Wild World

Shuaicheng Niu · Jiaxiang Wu · Yifan Zhang · Zhiquan Wen · Yaofo Chen · Peilin Zhao · Mingkui Tan

Test-time adaptation (TTA) has shown to be effective at tackling distribution shifts between training and testing data by adapting a given model on test samples. However, the online model updating of TTA may be unstable and this is often a key obstacle preventing existing TTA methods from being deployed in the real world. Specifically, TTA may fail to improve or even harm the model performance when test data have: 1) mixed distribution shifts, 2) small batch sizes, and 3) online imbalanced label distribution shifts, which are quite common in practice. In this paper, we investigate the unstable reasons and find that the batch norm layer is a crucial factor hindering TTA stability. Conversely, TTA can perform more stably with batch-agnostic norm layers, i.e., group or layer norm. However, we observe that TTA with group and layer norms does not always succeed and still suffers many failure cases. By digging into the failure cases, we find that certain noisy test samples with large gradients may disturb the model adaption and result in collapsed trivial solutions, i.e., assigning the same class label for all samples. To address the above collapse issue, we propose a sharpness-aware and reliable entropy minimization method, called SAR, for further stabilizing TTA from two aspects: 1) remove partial noisy samples with large gradients, 2) encourage model weights to go to a flat minimum so that the model is robust to the remaining noisy samples. Promising results demonstrate that SAR performs more stably than prior methods and is computationally efficient under the above wild test scenarios.

Tue 2 May 7:00 - 7:10 PDT

In-Person Oral presentation / top 25% paper
Proposal-Contrastive Pretraining for Object Detection from Fewer Data

Quentin Bouniot · Romaric Audigier · Angelique Loesch · Amaury Habrard

The use of pretrained deep neural networks represents an attractive way to achieve strong results with few data available. When specialized in dense problems such as object detection, learning local rather than global information in images has proven to be more efficient. However, for unsupervised pretraining, the popular contrastive learning requires a large batch size and, therefore, a lot of resources. To address this problem, we are interested in transformer-based object detectors that have recently gained traction in the community with good performance and with the particularity of generating many diverse object proposals. In this work, we present Proposal Selection Contrast (ProSeCo), a novel unsupervised overall pretraining approach that leverages this property. ProSeCo uses the large number of object proposals generated by the detector for contrastive learning, which allows the use of a smaller batch size, combined with object-level features to learn local information in the images. To improve the effectiveness of the contrastive loss, we introduce the object location information in the selection of positive examples to take into account multiple overlapping object proposals. When reusing pretrained backbone, we advocate for consistency in learning local information between the backbone and the detection head. We show that our method outperforms state of the art in unsupervised pretraining for object detection on standard and novel benchmarks in learning with fewer data.

Tue 2 May 7:10 - 7:20 PDT

In-Person Oral presentation / top 25% paper
Unsupervised Semantic Segmentation with Self-supervised Object-centric Representations

Andrii Zadaianchuk · Matthäus Kleindessner · Yi Zhu · Francesco Locatello · Thomas Brox

In this paper, we show that recent advances in self-supervised representation learning enable unsupervised object discovery and semantic segmentation with a performance that matches the state of the field on supervised semantic segmentation 10 years ago. We propose a methodology based on unsupervised saliency masks and self-supervised feature clustering to kickstart object discovery followed by training a semantic segmentation network on pseudo-labels to bootstrap the system on images with multiple objects. We show that while being conceptually simple our proposed baseline is surprisingly strong. We present results on PASCAL VOC that go far beyond the current state of the art (50.0 mIoU), and we report for the first time results on MS COCO for the whole set of 81 classes: our method discovers 34 categories with more than 20% IoU, while obtaining an average IoU of 19.6 for all 81 categories.