Oral 5 Track 2: Optimization



Chat is not available.

Wed 3 May 1:00 - 1:10 PDT

DASHA: Distributed Nonconvex Optimization with Communication Compression and Optimal Oracle Complexity

Alexander Tyurin · Peter Richtarik

We develop and analyze DASHA: a new family of methods for nonconvex distributed optimization problems. When the local functions at the nodes have a finite-sum or an expectation form, our new methods, DASHA-PAGE, DASHA-MVR and DASHA-SYNC-MVR, improve the theoretical oracle and communication complexity of the previous state-of-the-art method MARINA by Gorbunov et al. (2020). In particular, to achieve an $\varepsilon$-stationary point, and considering the random sparsifier Rand$K$ as an example, our methods compute the optimal number of gradients $\mathcal{O}\left(\frac{\sqrt{m}}{\varepsilon\sqrt{n}}\right)$ and $\mathcal{O}\left(\frac{\sigma}{\varepsilon^{3/2}n}\right)$ in finite-sum and expectation form cases, respectively, while maintaining the SOTA communication complexity $\mathcal{O}\left(\frac{d}{\varepsilon \sqrt{n}}\right)$. Furthermore, unlike MARINA, the new methods DASHA, DASHA-PAGE and DASHA-MVR send compressed vectors only, which makes them more practical for federated learning. We extend our results to the case when the functions satisfy the Polyak-Lojasiewicz condition. Finally, our theory is corroborated in practice: we see a significant improvement in experiments with nonconvex classification and training of deep learning models.

Wed 3 May 1:10 - 1:20 PDT

Single-shot General Hyper-parameter Optimization for Federated Learning

Yi Zhou · Parikshit Ram · Theodoros Salonidis · Nathalie Baracaldo · Horst Samulowitz · Heiko Ludwig

We address the problem of hyper-parameter optimization (HPO) for federated learning (FL-HPO). We introduce Federated Loss SuRface Aggregation (FLoRA), a general FL-HPO solution framework that can address use cases of tabular data and any Machine Learning (ML) model including gradient boosting training algorithms, SVMs, neural networks, among others and thereby further expands the scope of FL-HPO. FLoRA enables single-shot FL-HPO: identifying a single set of good hyper-parameters that are subsequently used in a single FL training. Thus, it enables FL-HPO solutions with minimal additional communication overhead compared to FL training without HPO. Utilizing standard smoothness assumptions, we theoretically characterize the optimality gap of FLoRA for any convex and non-convex loss functions, which explicitly accounts for the heterogeneous nature of the parties' local data distributions, a dominant characteristic of FL systems. Our empirical evaluation of FLoRA for multiple FL algorithms on seven OpenML datasets demonstrates significant model accuracy improvements over the baselines, and robustness to increasing number of parties involved in FL-HPO training.

Wed 3 May 1:20 - 1:30 PDT

Solving Constrained Variational Inequalities via a First-order Interior Point-based Method

Tong Yang · Michael Jordan · Tatjana Chavdarova

We develop an interior-point approach to solve constrained variational inequality (cVI) problems. Inspired by the efficacy of the alternating direction method of multipliers (ADMM) method in the single-objective context, we generalize ADMM to derive a first-order method for cVIs, that we refer to as ADMM-based interior-point method for constrained VIs (ACVI). We provide convergence guarantees for ACVI in two general classes of problems: (i) when the operator is $\xi$-monotone, and (ii) when it is monotone, some constraints are active and the game is not purely rotational. When the operator is in addition L-Lipschitz for the latter case, we match known lower bounds on rates for the gap function of $\mathcal{O}(1/\sqrt{K})$ and $\mathcal{O}(1/K)$ for the last and average iterate, respectively. To the best of our knowledge, this is the first presentation of a first-order interior-point method for the general cVI problem that has a global convergence guarantee. Moreover, unlike previous work in this setting, ACVI provides a means to solve cVIs when the constraints are nontrivial. Empirical analyses demonstrate clear advantages of ACVI over common first-order methods. In particular, (i) cyclical behavior is notably reduced as our methods approach the solution from the analytic center, and (ii) unlike projection-based methods that zigzag when near a constraint, ACVI efficiently handles the constraints.

Wed 3 May 1:30 - 1:40 PDT

FedExP: Speeding Up Federated Averaging via Extrapolation

Divyansh Jhunjhunwala · Shiqiang Wang · Gauri Joshi

Federated Averaging (FedAvg) remains the most popular algorithm for Federated Learning (FL) optimization due to its simple implementation, stateless nature, and privacy guarantees combined with secure aggregation. Recent work has sought to generalize the vanilla averaging in FedAvg to a generalized gradient descent step by treating client updates as pseudo-gradients and using a server step size. While the use of a server step size has been shown to provide performance improvement theoretically, the practical benefit of the server step size has not been seen in most existing works. In this work, we present FedExP, a method to adaptively determine the server step size in FL based on dynamically varying pseudo-gradients throughout the FL process. We begin by considering the overparameterized convex regime, where we reveal an interesting similarity between FedAvg and the Projection Onto Convex Sets (POCS) algorithm. We then show how FedExP can be motivated as a novel extension to the extrapolation mechanism that is used to speed up POCS. Our theoretical analysis later also discusses the implications of FedExP in underparameterized and non-convex settings. Experimental results show that FedExP consistently converges faster than FedAvg and competing baselines on a range of realistic FL datasets. 

Wed 3 May 1:40 - 1:50 PDT

LMC: Fast Training of GNNs via Subgraph Sampling with Provable Convergence

Zhihao Shi · Xize Liang · Jie Wang

The message passing-based graph neural networks (GNNs) have achieved great success in many real-world applications.However, training GNNs on large-scale graphs suffers from the well-known neighbor explosion problem, i.e., the exponentially increasing dependencies of nodes with the number of message passing layers. Subgraph-wise sampling methods---a promising class of mini-batch training techniques---discard messages outside the mini-batches in backward passes to avoid the neighbor explosion problem at the expense of gradient estimation accuracy. This poses significant challenges to their convergence analysis and convergence speeds, which seriously limits their reliable real-world applications. To address this challenge, we propose a novel subgraph-wise sampling method with a convergence guarantee, namely Local Message Compensation (LMC). To the best of our knowledge, LMC is the {\it first} subgraph-wise sampling method with provable convergence. The key idea of LMC is to retrieve the discarded messages in backward passes based on a message passing formulation of backward passes. By efficient and effective compensations for the discarded messages in both forward and backward passes, LMC computes accurate mini-batch gradients and thus accelerates convergence. We further show that LMC converges to first-order stationary points of GNNs. Experiments on large-scale benchmark tasks demonstrate that LMC significantly outperforms state-of-the-art subgraph-wise sampling methods in terms of efficiency.

Wed 3 May 1:50 - 2:00 PDT

Multi-Objective Online Learning

Jiyan Jiang · Wenpeng Zhang · Shiji Zhou · Lihong Gu · Xiaodong Zeng · Wenwu Zhu

This paper presents a systematic study of multi-objective online learning. We first formulate the framework of Multi-Objective Online Convex Optimization, which encompasses a novel multi-objective regret. This regret is built upon a sequence-wise extension of the commonly used discrepancy metric Pareto suboptimality gap in zero-order multi-objective bandits. We then derive an equivalent form of the regret, making it amenable to be optimized via first-order iterative methods. To motivate the algorithm design, we give an explicit example in which equipping OMD with the vanilla min-norm solver for gradient composition will incur a linear regret, which shows that merely regularizing the iterates, as in single-objective online learning, is not enough to guarantee sublinear regrets in the multi-objective setting. To resolve this issue, we propose a novel min-regularized-norm solver that regularizes the composite weights. Combining min-regularized-norm with OMD results in the Doubly Regularized Online Mirror Multiple Descent algorithm. We further derive the multi-objective regret bound for the proposed algorithm, which matches the optimal bound in the single-objective setting. Extensive experiments on real-world datasets verify the effectiveness of the proposed algorithm.

Wed 3 May 2:00 - 2:10 PDT

Continuous PDE Dynamics Forecasting with Implicit Neural Representations

Yuan Yin · Matthieu Kirchmeyer · Jean-Yves Franceschi · alain rakotomamonjy · patrick gallinari

Effective data-driven PDE forecasting methods often rely on fixed spatial and / or temporal discretizations. This raises limitations in real-world applications like weather prediction where flexible extrapolation at arbitrary spatiotemporal locations is required. We address this problem by introducing a new data-driven approach, DINo, that models a PDE's flow with continuous-time dynamics of spatially continuous functions. This is achieved by embedding spatial observations independently of their discretization via Implicit Neural Representations in a small latent space temporally driven by a learned ODE. This separate and flexible treatment of time and space makes DINo the first data-driven model to combine the following advantages. It extrapolates at arbitrary spatial and temporal locations; it can learn from sparse irregular grids or manifolds; at test time, it generalizes to new grids or resolutions. DINo outperforms alternative neural PDE forecasters in a variety of challenging generalization scenarios on representative PDE systems.