Session

Oral 5 Track 4: Applications & Optimization

AD10

Abstract:

Chat is not available.

Wed 3 May 1:00 - 1:10 PDT

In-Person Oral presentation / top 25% paper
Socratic Models: Composing Zero-Shot Multimodal Reasoning with Language

Andy Zeng · Maria Attarian · brian ichter · Krzysztof Choromanski · Adrian Wong · Stefan Welker · Federico Tombari · Aveek Purohit · Michael Ryoo · Vikas Sindhwani · Johnny Lee · Vincent Vanhoucke · Pete Florence

We investigate how multimodal prompt engineering can use language as the intermediate representation to combine complementary knowledge from different pretrained (potentially multimodal) language models for a variety of tasks. This approach is both distinct from and complementary to the dominant paradigm of joint multimodal training. It also recalls a traditional systems-building view as in classical NLP pipelines, but with prompting large pretrained multimodal models. We refer to these as Socratic Models (SMs): a modular class of systems in which multiple pretrained models may be composed zero-shot via multimodal-informed prompting to capture new multimodal capabilities, without additional finetuning. We show that these systems provide competitive state-of-the-art performance for zero-shot image captioning and video-to-text retrieval, and also enable new applications such as (i) answering free-form questions about egocentric video, (ii) engaging in multimodal assistive dialogue with people (e.g., for cooking recipes), and (iii) robot perception and planning. We hope this work provides (a) results for stronger zero-shot baseline performance with analysis also highlighting their limitations, (b) new perspectives for building multimodal systems powered by large pretrained models, and (c) practical application advantages in certain regimes limited by data scarcity, training compute, or model access.

Wed 3 May 1:10 - 1:20 PDT

In-Person Oral presentation / top 5% paper
Clean-image Backdoor: Attacking Multi-label Models with Poisoned Labels Only

Kangjie Chen · Xiaoxuan Lou · Guowen Xu · Jiwei Li · Tianwei Zhang

Multi-label models have been widely used in various applications including image annotation and object detection. The fly in the ointment is its inherent vulnerability to backdoor attacks due to the adoption of deep learning techniques. However, all existing backdoor attacks exclusively require to modify training inputs (e.g., images), which may be impractical in real-world applications. In this paper, we aim to break this wall and propose the first clean-image backdoor attack, which only poisons the training labels without touching the training samples. Our key insight is that in a multi-label learning task, the adversary can just manipulate the annotations of training samples consisting of a specific set of classes to activate the backdoor. We design a novel trigger exploration method to find convert and effective triggers to enhance the attack performance. We also propose three target label selection strategies to achieve different goals. Experimental results indicate that our clean-image backdoor can achieve a 98% attack success rate while preserving the model's functionality on the benign inputs. Besides, the proposed clean-image backdoor can evade existing state-of-the-art defenses.

Wed 3 May 1:20 - 1:30 PDT

In-Person Oral presentation / top 25% paper
DocPrompting: Generating Code by Retrieving the Docs

Shuyan Zhou · Uri Alon · Frank F Xu · Zhengbao Jiang · Graham Neubig

Publicly available source-code libraries are continuously growing and changing. This makes it impossible for models of codeto keep current with all available APIs by simply training these models on existing code repositories. Thus, existing models inherently cannot generalize to using unseen functions and libraries, because these would never appear in the training data. In contrast, when human programmers use functions and libraries for the first time, they frequently refer to textual resources such as code manuals and documentation, to explore and understand the available functionality. Inspired by this observation, we introduce DocPrompting: a natural-language-to-code generation approach that explicitly leverages documentation by (1) retrieving the relevant documentation pieces given an NL intent, and (2) generating code based on the NL intent and the retrieved documentation. DocPrompting is general: it can be applied to any programming language and is agnostic to the underlying neural model. We demonstrate that DocPrompting consistently improves NL-to-code models: DocPrompting improves strong base models such as CodeT5 by 2.85% in pass@1 (52% relative gain) and 4.39% in pass@10 (30% relative gain) in execution-based evaluation on the popular Python CoNaLa benchmark; on a new Bash dataset tldr, DocPrompting improves CodeT5 and GPT-Neo1.3B by up to absolute 6.9% exact match.

Wed 3 May 1:30 - 1:40 PDT

In-Person Oral presentation / top 5% paper
View Synthesis with Sculpted Neural Points

Yiming Zuo · Jia Deng

We address the task of view synthesis, generating novel views of a scene given a set of images as input. In many recent works such as NeRF (Mildenhall et al., 2020), the scene geometry is parameterized using neural implicit representations (i.e., MLPs). Implicit neural representations have achieved impressive visual quality but have drawbacks in computational efficiency. In this work, we propose a new approach that performs view synthesis using point clouds. It is the first point-based method that achieves better visual quality than NeRF while being 100× faster in rendering speed. Our approach builds on existing works on differentiable point-based rendering but introduces a novel technique we call “Sculpted Neural Points (SNP)”, which significantly improves the robustness to errors and holes in the reconstructed point cloud. We further propose to use view-dependent point features based on spherical harmonics to capture non-Lambertian surfaces, and new designs in the point-based rendering pipeline that further boost the performance. Finally, we show that our system supports fine-grained scene editing. Code is available at https://github.com/princeton-vl/SNP.

Wed 3 May 1:40 - 1:50 PDT

In-Person Oral presentation / top 25% paper
VA-DepthNet: A Variational Approach to Single Image Depth Prediction

Ce Liu · Suryansh Kumar · Shuhang Gu · Radu Timofte · Luc Van Gool

We introduce VA-DepthNet, a simple, effective, and accurate deep neural network approach for the single-image depth prediction (SIDP) problem. The proposed approach advocates using classical first-order variational constraints for this problem. While state-of-the-art deep neural network methods for SIDP learn the scene depth from images in a supervised setting, they often overlook the invaluable invariances and priors in the rigid scene space, such as the regularity of the scene. The paper's main contribution is to reveal the benefit of classical and well-founded variational constraints in the neural network design for the SIDP task. It is shown that imposing first-order variational constraints in the scene space together with popular encoder-decoder-based network architecture design provides excellent results for the supervised SIDP task. The imposed first-order variational constraint makes the network aware of the depth gradient in the scene space, i.e., regularity. The paper demonstrates the usefulness of the proposed approach via extensive evaluation and ablation analysis over several benchmark datasets, such as KITTI, NYU Depth V2, and SUN RGB-D. The VA-DepthNet at test time shows considerable improvements in depth prediction accuracy compared to the prior art and is accurate also at high-frequency regions in the scene space. At the time of writing this paper, our method---labeled as VA-DepthNet, when tested on the KITTI depth-prediction evaluation set benchmarks, shows state-of-the-art results, and is the top-performing published approach.

Wed 3 May 1:50 - 2:00 PDT

In-Person Oral presentation / top 5% paper
Visual Classification via Description from Large Language Models

Sachit Menon · Carl Vondrick

Vision-language models such as CLIP have shown promising performance on a variety of recognition tasks using the standard zero-shot classification procedure -- computing similarity between the query image and the embedded words for each category. By only using the category name, they neglect to make use of the rich context of additional information that language affords. The procedure gives no intermediate understanding of why a category is chosen, and furthermore provides no mechanism for adjusting the criteria used towards this decision. We present an alternative framework for classification with VLMs, which we call classification by description. We ask VLMs to check for descriptive features rather than broad categories: to find a tiger, look for its stripes; its claws; and more. By basing decisions on these descriptors, we can provide additional cues that encourage using the features we want to be used. In the process, we can get a clear idea of what the model ``thinks" it is seeing to make its decision; it gains some level of inherent explainability. We query large language models (e.g., GPT-3) for these descriptors to obtain them in a scalable way. Extensive experiments show our framework has numerous advantages past interpretability. We show improvements in accuracy on ImageNet across distribution shifts; demonstrate the ability to adapt VLMs to recognize concepts unseen during training; and illustrate how descriptors can be edited to effectively mitigate bias compared to the baseline.

Wed 3 May 2:00 - 2:10 PDT

In-Person Oral presentation / top 5% paper
Mitigating Gradient Bias in Multi-objective Learning: A Provably Convergent Approach

Heshan Fernando · Han Shen · Miao Liu · Subhajit Chaudhury · Keerthiram Murugesan · Tianyi Chen

Many machine learning problems today have multiple objective functions. They appear either in learning with multiple criteria where learning has to make a trade-off between multiple performance metrics such as fairness, safety and accuracy; or, in multi-task learning where multiple tasks are optimized jointly, sharing inductive bias between them. This problems are often tackled by the multi-objective optimization framework. However, existing stochastic multi-objective gradient methods and its variants (e.g., MGDA, PCGrad, CAGrad, etc.) all adopt a biased noisy gradient direction, which leads to degraded empirical performance. To this end, we develop a stochastic multi-objective gradient correction (MoCo) method for multi-objective optimization. The unique feature of our method is that it can guarantee convergence without increasing the batch size even in the nonconvex setting. Simulations on multi-task supervised and reinforcement learning demonstrate the effectiveness of our method relative to the state-of-the-art methods.