Oral 6 Track 5: Applications- & Deep Learning and representational learning



Chat is not available.

Wed 3 May 6:00 - 6:10 PDT

In-Person Oral presentation / top 5% paper
Language Modelling with Pixels

Phillip Rust · Jonas F. Lotz · Emanuele Bugliarello · Elizabeth Salesky · Miryam de Lhoneux · Desmond Elliott

Language models are defined over a finite set of inputs, which creates a vocabulary bottleneck when we attempt to scale the number of supported languages. Tackling this bottleneck results in a trade-off between what can be represented in the embedding matrix and computational issues in the output layer. This paper introduces PIXEL, the Pixel-based Encoder of Language, which suffers from neither of these issues. PIXEL is a pretrained language model that renders text as images, making it possible to transfer representations across languages based on orthographic similarity or the co-activation of pixels. PIXEL is trained to reconstruct the pixels of masked patches instead of predicting a distribution over tokens. We pretrain the 86M parameter PIXEL model on the same English data as BERT and evaluate on syntactic and semantic tasks in typologically diverse languages, including various non-Latin scripts. We find that PIXEL substantially outperforms BERT on syntactic and semantic processing tasks on scripts that are not found in the pretraining data, but PIXEL is slightly weaker than BERT when working with Latin scripts. Furthermore, we find that PIXEL is more robust than BERT to orthographic attacks and linguistic code-switching, further confirming the benefits of modelling language with pixels.

Wed 3 May 6:10 - 6:20 PDT

In-Person Oral presentation / top 25% paper
Parametrizing Product Shape Manifolds by Composite Networks

Josua Sassen · Klaus Hildebrandt · Martin Rumpf · Benedikt Wirth

Parametrizations of data manifolds in shape spaces can be computed using the rich toolbox of Riemannian geometry. This, however, often comes with high computational costs, which raises the question if one can learn an efficient neural network approximation. We show that this is indeed possible for shape spaces with a special product structure, namely those smoothly approximable by a direct sum of low-dimensional manifolds. Our proposed architecture leverages this structure by separately learning approximations for the low-dimensional factors and a subsequent combination. After developing the approach as a general framework, we apply it to a shape space of triangular surfaces. Here, typical examples of data manifolds are given through datasets of articulated models and can be factorized, for example, by a Sparse Principal Geodesic Analysis (SPGA). We demonstrate the effectiveness of our proposed approach with experiments on synthetic data as well as manifolds extracted from data via SPGA.

Wed 3 May 6:20 - 6:30 PDT

In-Person Oral presentation / top 25% paper
ImageNet-X: Understanding Model Mistakes with Factor of Variation Annotations

Badr Youbi Idrissi · Diane Bouchacourt · Randall Balestriero · Ivan Evtimov · Caner Hazirbas · Nicolas Ballas · Pascal Vincent · Michal Drozdzal · David Lopez-Paz · Mark Ibrahim

Deep learning vision systems are widely deployed across applications where reliability is critical. However, even today's best models can fail to recognize an object when its pose, lighting, or background varies. While existing benchmarks surface examples challenging for models, they do not explain why such mistakes arise. To address this need, we introduce ImageNet-X—a set of sixteen human annotations of factors such as pose, background, or lighting the entire ImageNet-1k validation set as well as a random subset of 12k training images. Equipped with ImageNet-X, we investigate 2,200 current recognition models and study the types of mistakes as a function of model’s (1) architecture, e.g. transformer vs. convolutional, (2) learning paradigm, e.g. supervised vs. self-supervised, and (3) training procedures, e.g., data augmentation. Regardless of these choices, we find models have consistent failure modes across ImageNet-X categories. We also find that while data augmentation can improve robustness to certain factors, they induce spill-over effects to other factors. For example, color-jitter augmentation improves robustness to color and brightness, but surprisingly hurts robustness to pose. Together, these insights suggest to advance the robustness of modern vision models, future research should focus on collecting additional data and understanding data augmentation schemes. Along with these insights, we release a toolkit based on ImageNet-X to spur further study into the mistakes image recognition systems make.

Wed 3 May 6:30 - 6:40 PDT

In-Person Oral presentation / top 25% paper
Data Continuity Matters: Improving Sequence Modeling with Lipschitz Regularizer

Eric Qu · Xufang Luo · Dongsheng Li

Sequence modeling is a core problem in machine learning, and various neural networks have been designed to process different types of sequence data. However, few attempts have been made to understand the inherent data property of sequence data, neglecting the critical factor that may significantly affect the performance of sequence modeling. In this paper, we theoretically and empirically analyze a generic property of sequence data, i.e., continuity, and connect this property with the performance of deep models. First, we empirically observe that different kinds of models for sequence modeling prefer data with different continuity. Then, we theoretically analyze the continuity preference of different models in both time and frequency domains. To further utilize continuity to improve sequence modeling, we propose a simple yet effective Lipschitz Regularizer, that can flexibly adjust data continuity according to model preferences, and bring very little extra computational cost. Extensive experiments on various tasks demonstrate that altering data continuity via Lipschitz Regularizer can largely improve the performance of many deep models for sequence modeling.

Wed 3 May 6:40 - 6:50 PDT

In-Person Oral presentation / top 25% paper
Dual Algorithmic Reasoning

Danilo Numeroso · Davide Bacciu · Petar Veličković

Neural Algorithmic Reasoning is an emerging area of machine learning which seeks to infuse algorithmic computation in neural networks, typically by training neural models to approximate steps of classical algorithms. In this context, much of the current work has focused on learning reachability and shortest path graph algorithms, showing that joint learning on similar algorithms is beneficial for generalisation. However, when targeting more complex problems, such "similar" algorithms become more difficult to find. Here, we propose to learn algorithms by exploiting duality of the underlying algorithmic problem. Many algorithms solve optimisation problems. We demonstrate that simultaneously learning the dual definition of these optimisation problems in algorithmic learning allows for better learning and qualitatively better solutions. Specifically, we exploit the max-flow min-cut theorem to simultaneously learn these two algorithms over synthetically generated graphs, demonstrating the effectiveness of the proposed approach. We then validate the real-world utility of our dual algorithmic reasoner by deploying it on a challenging brain vessel classification task, which likely depends on the vessels’ flow properties. We demonstrate a clear performance gain when using our model within such a context, and empirically show that learning the max-flow and min-cut algorithms together is critical for achieving such a result.

Wed 3 May 6:50 - 7:00 PDT

In-Person Oral presentation / top 25% paper
DIFFormer: Scalable (Graph) Transformers Induced by Energy Constrained Diffusion

Qitian Wu · Chenxiao Yang · Wentao Zhao · Yixuan He · David Wipf · Junchi Yan

Real-world data generation often involves complex inter-dependencies among instances, violating the IID-data hypothesis of standard learning paradigms and posing a challenge for uncovering the geometric structures for learning desired instance representations. To this end, we introduce an energy constrained diffusion model which encodes a batch of instances from a dataset into evolutionary states that progressively incorporate other instances' information by their interactions. The diffusion process is constrained by descent criteria w.r.t. a principled energy function that characterizes the global consistency of instance representations over latent structures. We provide rigorous theory that implies closed-form optimal estimates for the pairwise diffusion strength among arbitrary instance pairs, which gives rise to a new class of neural encoders, dubbed as DIFFormer (diffusion-based Transformers), with two instantiations: a simple version with linear complexity for prohibitive instance numbers, and an advanced version for learning complex structures. Experiments highlight the wide applicability of our model as a general-purpose encoder backbone with superior performance in various tasks, such as node classification on large graphs, semi-supervised image/text classification, and spatial-temporal dynamics prediction. The codes are available at

Wed 3 May 7:00 - 7:10 PDT

In-Person Oral presentation / top 25% paper
Warping the Space: Weight Space Rotation for Class-Incremental Few-Shot Learning

Do-Yeon Kim · Dong-Jun Han · Jun Seo · Jaekyun Moon

Class-incremental few-shot learning, where new sets of classes are provided sequentially with only a few training samples, presents a great challenge due to catastrophic forgetting of old knowledge and overfitting caused by lack of data. During finetuning on new classes, the performance on previous classes deteriorates quickly even when only a small fraction of parameters are updated, since the previous knowledge is broadly associated with most of the model parameters in the original parameter space. In this paper, we introduce WaRP, the \textit{weight space rotation process}, which transforms the original parameter space into a new space so that we can push most of the previous knowledge compactly into only a few important parameters. By properly identifying and freezing these key parameters in the new weight space, we can finetune the remaining parameters without affecting the knowledge of previous classes. As a result, WaRP provides an additional room for the model to effectively learn new classes in future incremental sessions. Experimental results confirm the effectiveness of our solution and show the improved performance over the state-of-the-art methods.

Wed 3 May 7:10 - 7:20 PDT

In-Person Oral presentation / top 25% paper
Last Layer Re-Training is Sufficient for Robustness to Spurious Correlations

Polina Kirichenko · Pavel Izmailov · Andrew Wilson

Neural network classifiers can largely rely on simple spurious features, such as image backgrounds, to make predictions. However, even in these cases, we show that they still often learn core features associated with the desired attributes of the data, contrary to recent findings. Inspired by this insight, we demonstrate that simple last layer retraining can match or outperform state-of-the-art approaches on spurious correlation benchmarks, but with profoundly lower complexity and computational expenses. Moreover, we show that last layer retraining on large ImageNet-trained models can also significantly reduce reliance on background and texture information, improving robustness to covariate shift, after only minutes of training on a single GPU.