Skip to yearly menu bar Skip to main content


Poster
in
Workshop: ICLR 2025 Workshop on Tackling Climate Change with Machine Learning: Data-Centric Approaches in ML for Climate Action

Deep Reinforcement Learning for Power Grid Multi-Stage Cascading Failure Mitigation

Bo Meng · Chenghao Xu · Yongli Zhu


Abstract:

Cascading failures in power grids can lead to grid collapse, causing severe disruptions to social operations and economic activities. In certain cases, multi-stage cascading failures can occur. However, existing cascading-failure-mitigation strategies are usually single-stage-based, overlooking the complexity of the multi-stage scenario. This paper treats the multi-stage cascading failure problem as a reinforcement learning task and develops a simulation environment. The reinforcement learning agent is then trained via the deterministic policy gradient algorithm to achieve continuous actions. Finally, the effectiveness of the proposed approach is validated on the IEEE 14-bus and IEEE 118-bus systems.

Chat is not available.